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Abstract—The Internet of Things (IoT) paradigm poses a
great variety of application domains where million of devices
work uninterruptedly to improve some aspect of our lives. To
support the continuous execution of the applications working
on the devices, energy harvesting systems enable to extract the
energy found naturally in the environment (for instance from
the sun or from the wind) and convert it into energy able to
either sustain the device’s operation and recharge its batteries
which, in conjunction with an appropriate scheduling strategy,
led to the device to an electrically sustainable state (i.e. an energy-
neutral state). Most of the works found in literature oriented
to achieve energy neutrality are however evaluated by means
of simulation which means that, in spite of precisely modeling
hardware features and energy productions, lack of the realism
that we find in a real deployment. A minor part of the works
are based on a real deployment but do not share the collected
data that permit to replicate the analysis. With this purpose in
mind, in this article we describe a testbed designed for outdoor
monitoring purposes in the IoT context, equipped with several
sensors for weather conditions monitoring and with a solar
panel to provide application lifetimes potentially infinite. The
testbed was deployed on the roof of a building and it executed
uninterruptedly an application able to generate a dataset with
the collected information over a period of more than two months.
This dataset has been online published to be used for different
researching purposes, as for instance, prediction models of the
energy production.

Index Terms—IoT, Deployment, Testbed, Solar Energy Har-
vesting, Dataset.

I . I N T R O D U C T I O N

The impressive growth of Internet of Things (IoT) market
— the expectations for 2020 is to have over 50 billion devices
connected to the Internet [1] — is paving the way for
many new applications and services. In many cases, such
applications involve the monitoring/control of outdoor scenarios
consisting in large deployments of stationary devices. In such
deployments, however, the use of battery-powered devices may
result, in many cases, unfeasible due to high costs incurred for
maintenance. A viable alternative is to use energy harvesting
devices that may operate uninterruptedly for very long time
periods, with a potentially unlimited lifetime. The use of
photovoltaic (PV) panels and batteries is arguably the most
common and mature technology for energy harvesting. The
purpose of a rechargeable battery is to provide an energy buffer
to use when the energy production of the panel is insufficient

or null (e.g. in a cloudy day or at night). Nevertheless, even
with the battery and depending on its capacity, if the period of
low energy production is too long (for instance, in a sequence
of very cloudy days) the device may stop working, until the
solar panel starts its production again. This fact has motivated
several recent research works aimed at introducing strategies
to modulate the energy consumption of the device, by either
controlling its duty cycle or its functionalities [2], in order to
match it with the actual and expected energy production [3],
[4], on the base of an estimation of the next energy production
of the panel [5], [6]. In most cases, these works evaluate the
performance of the proposed solutions based on simulations
and on energy consumption models of the devices. This is
motivated by the fact that deploying a testbed and running it for
a sufficiently long period is a time-consuming task that incurs
in additional efforts and costs. On the other hand, assessing
a solution based on real equipment in real environments and
conditions would provide a significant added value to the
research. It is in this context that the design and deployment
of an energy-harvested IoT testbed is of interest to develop
and validate new energy-aware algorithms.

In other research fields similar problems have been solved by
producing and making publicly available suitable datasets [5],
[7], [8]. Some open datasets concerning solar power already
exist, but they are not specifically targeting IoT installations,
but rather, home or grid-level PV installations [9]. On the other
hand, some prototype that may be used to this purpose already
exist. Among these, we mention [10] that develops a prototypal
testbed to assess the proposed models of energy production (but
the dataset is not published). Another testbed [11] addresses
the use of an extended version of the Linux kernel in energy
harvesting real-time systems, which, however, addresses a
rather different class of IoT than the one (low-power devices)
we address in our work. The work in [12] describes the
implementation of a flexible platform for the monitoring
and control of reconfigurable energy harvesting systems, and
another interesting platform for wireless sensor networks that
also include energy harvesting capabilities is presented in [13],
and two experimental platforms for energy harvesting are also
introduced in [14] and [15]. However, neither of these proposals
address the development of a dataset for the assessment of
algorithms/models of energy harvesting devices.



With the aim of capturing the particularities of solar energy
harvesting for IoT applications, this work aims to provide a
public dataset for such purpose. To this end, the experimental
IoT testbed includes data logging functionalities and sensors to
provide detailed measurements about the instantaneous energy
production obtained by the PV panel, the battery state of charge
and IoT node power consumption. Furthermore the wind power
resource is also measured by means of an anemometer. At the
same time, the testbed can be programmed to run applications
that modulate different energy consumption, so to experiment
under different conditions.

The remainder of this paper is organized as follows. In
Section II we detail the design of our testbed from a hardware
perspective and in Section III we describe the application
that was implemented on the testbed to generate the dataset.
Section IV presents an analysis of the collected dataset and
shows how it can be used for prediction of the energy
production. Finally, in Section V we draw the main conclusions
of this work and make suggestions for further research.

I I . T E S T B E D D E S C R I P T I O N

The general diagram of the testbed developed is shown in
Figure 1. In order to enable different hardware configurations
and processing capabilities, a modular system has been de-
signed, comprising an IoT node to implement different energy-
aware solutions and a data logger (DL) to record the most
relevant variables of the testbed. A picture of the testbed PCB
design is shown in Figure 2, where the main components are
identified. Depending on the application and the equipment
location, it might be necessary to have a system with different
processing power, energy harvesting dimensioning, variable
power consumption and different communication technologies.
Hence, for the design of the testbed the following set of
preliminary features, based on the identified needs, has been
considered:

• To provide flexibility to test a wide range of solutions.
• To have a data logging functionality and an IoT node

energetically independent.
• To perform data logging with a reliable and continuous

power supply.
• To adopt a commonly-used architecture for IoT and

embedded systems, namely the ARM architecture.
• To provide the possibility of outdoor deployment.
• To provide the possibility of only using the DL, IoT node

or both.
• Integration of different energy harvesting (EH) and storage

technologies, currently only a photovoltaic (PV) panel and
a battery.

The following subsections describe the components depicted
in the general scheme of the testbed shown in Figure 1.

A. Processing

With the purpose of implementing several technology options,
the family of development boards known as Adafruit Feather
has been selected to design the modular testbed. These
modules are both standalone and stackable. There are several

Fig. 1. General testbed diagram.

Fig. 2. Picture of the testbed PCB.

Feather boards that combine different microcontrollers (e.g.
ATSAMD21, ESP8266, 32u4, ATmega32u4, ESP32) with the
possibility of using different communication technologies (e.g.
Lora, Wifi, Bluetooth, 2G/3G, RF). This allows to test different
processing capabilities or communications technologies with
the same board layout (i.e. form factor). Furthermore, a broad
family of stackable boards is available, the so-called Feather
Wings, to provide additional functionalities to the system.

By means of several jumpers the platform can be configured
to work with two microcontrollers, as shown in Figure 2,
or a single microcontroller (either the IoT node or the DL).
Also, it is possible to choose how the microcontrollers are
supplied depending on the system application. The aim of
separating power supplies of the IoT node and of the DL is to
obtain accurate measurements of the node consumption with
no energy overhead for the IoT node. For this reason, each



board supplies their associated sensors. While the IoT node is
always connected to the energy harvesting system, the DL can
be either supplied by the harvesting system, by an independent
12 V battery or by the 230V AC mains, depending on the
availability in a particular site.

1) IoT node: An Adafruit Feather M0 [16] with an RFM95
LoRa radio chip is used. Among the most relevant characteris-
tics, this module has 20 General Purpose Input Output (GPIO),
enabling up to 10 analog inputs, 8 Pulse-Width Modulation
(PWM) outputs and UART, SPI and I2C communication
interfaces. As Figure 1 shows, the most relevant connections
of the IoT node are:

• Serial communication (UART) with the DL.
• A temperature and humidity sensor connected to 2 digital

GPIO (two-wire communication interface).
• Jumpers to connect the microcontroller I2C interface to

the general I2C bus.
• Power supply coming from the energy harvesting system.

The supply voltage is sensed with an analog input.
2) Data Logger: Another Adafruit Feather M0 with RFM95

LoRa Radio was chosen as the DL. This module receives
data from the IoT node by using a serial communication. It
also measures both the system currents and voltages with
the I2C interface to obtain the IoT node consumption, the
PV Panel energy production and the battery state of charge
(SOC). Additionally, it obtains the wind speed by means of
an anemometer connected to an analog input. The obtained
information is stored into a micro SD card with a timestamp
that is obtained from a real-time clock (RTC). Three Feather
Wing boards are stacked on top of the Feather M0 to add
functionalities to the DL:

• A latched Mini Relay measures the PV Panel short-circuit
current to estimate the solar irradiation.

• An OLED monochrome display shows to the operator the
actual system state (i.e. warnings, errors, data stored).

• An Adalogger module provides a battery-backed RTC and
a micro SD card storage. The RTC uses the I2C bus, and
the micro SD socket is connected to the SPI port pins,
requiring an additional pin to enable the Chip Select.

B. Energy Harvesting

According to the power supply requirements and the location
of the testbed, the energy harvesting system is designed with
a PV panel as energy harvester, a solar charger and a Li-Po
battery as energy storage, as shown in Figure 1.

1) Energy Harvester: Due to the environmental conditions
and the system energy requirements, a 2 Watts PV panel [17]
was selected as the energy harvester. This panel provides a
nominal current of 340 mA with an output voltage of 6.5 V
(i.e. maximum power point in standard conditions). The PV
panel construction characteristics (waterproof, scratch resistant,
and UV resistant) make it an appropriate option for long term
outdoor use.

2) Power conversion: In order to efficiently extract the
energy harvested by the PV panel and control both the battery
charging process and load supply, a solar charger circuit is used

(https://www.adafruit.com/product/390). This circuit has one
input, the PV panel, and two different outputs: battery and load.
When the energy supplied by the PV panel is sufficient, the
current directly goes to the load output, where the IoT node is
connected. Furthermore, if the battery is not completely charged
the surplus current from the PV panel is used to charge it. If
the current required is higher than the PV panel production,
the current is supplemented from the battery.

3) Energy Storage: In order to store the surplus energy
harvested by the solar panel, a Li-Po battery is used. The
battery supplies the IoT node when the solar energy is not
enough due to the weather conditions, or at night time. The
selected battery has a capacity of 2000 mAh with a nominal
voltage of 3.7 V, and the output ranges from 4.2 V (when fully
charged) to 3.3 V (when fully discharged).

C. Sensors

1) Temperature and Humidity: Because the wide range of
operation, resolution and the robust and integrable design,
the SHT10 Mesh-Protected and Weather-Proof sensor [18]
is selected to measure the temperature and the humidity.
The sensor output is a fully-calibrated digital signal and the
information is transmitted with a 2-wire protocol. The chip
has been designed by Sensiron and it operates between -40 to
123.8◦C, and 0 to 100% relative humidity. The measurement
resolution can be configured changing the status register by
command. The settings used in this paper allow to measure
the temperature and humidity with a resolution of 0.01◦C and
0.05%, respectively.

2) Anemometer: We use the anemometer [19] to measure
the wind speed. This sensor has an analog output with the
range 0.4 2V, sensing the wind speed from 0.5 to 50 m/s.

3) Current sensor: Three INA219 [20] sensors are used in
the testbed to measure the battery, IoT node, and PV currents
and voltages. This module support the I2C interface, operating
only as a slave device and it features up to 16 programmable
addresses. Using this interface allows changing the quantity of
sensors without wiring new tracks for each device. The default
register configuration is used, enabling to measure a range of
±3.2 A, with a resolution of ±0.8 mA.

I I I . D ATA S E T D E S C R I P T I O N

The testbed described in Section II has been designed
to support the prolonged execution of outdoor monitoring
applications, by means of an energy harvester, a solar panel,
which let the battery level grow depending on the application
consumption and the weather conditions. Since the final purpose
of our testbed is to evaluate different IoT scenarios with energy-
neutrality requirements, i.e. to evaluate the capacity of the
system for running indefinitely, applications with different
energy consumptions that execute under different weather
conditions should be implemented. To build these applications,
we have developed a function library on the microprocessor
Adafruit Feather M0 by using the development environment
Arduino 1.8.7. The proposal of this library is to ease the
development of applications on top of the proposed testbed



by abstracting away the hardware complexity and by hiding
the programmer the division of tasks carried out by the DL
and by the IoT node. Due to the usage of this library, from
the programmer perspective the platform is just one single
device that integrates the capabilities of sensing (through several
current sensors, and a temperature/ humidity sensor), storing
into an SD card, communication by using different technologies
(i.e. WiFi, LoRa, Bluetooth), energy harvesting from a solar
panel and energy storing by means of a 2000 mAh Li-Po
battery. Thus, our library is composed of a set of functions
that provide basic services to request operations to the overall
platform: sample each sensor, read and write from/to the SD
card, send/receive from a radio, and other utility functions.

As an example, consider the Dataset application, which is
intended to periodically gather data from each sensor and write
these data into the SD memory card. The variables of interest
collected to produce the dataset include information in terms of
time stamp, energy resource, battery state, node consumption
and meteorological conditions: Date (dd/mm/yyyy), Time
(hh:mm:ss), Load (mA), Battery (mA), Panel (mA), Wind
(m/s), Temp (◦C), Hum (%), and Volt (V). Algorithm 1 lists
the pseudocode to build this dataset. A complete description
of the variables used is provided in Table I.

Algorithm 1 A Dataset application with 1 minute period.
Require: Period = 60 seconds
Ensure: Date, Time, Load, Battery, Panel, Wind,
Temp, Hum, Volt
loop
t0 = getTimeRTC(); // t0 in ms
Load = readINA_0();
Battery = readINA_1();
Panel = readINA_2();
Wind = readAnenometer();
Temp = readSHT10Temp();
Hum = readSHT10Hum();
Volt = readBatteryVolt()
writeSD(getDateRTC(), getTimeRTC(), Load,
Battery,Panel, Wind, Temp, Hum, Volt)
t1 = getTimeRTC(); // t1 in ms
delay(Period*1000-(t1-t0))

end loop

Note that the duty cycle (DC) of this application can be easily
computed as DC = (t1−t0)

Period . After running the application, we
obtained in average values of (t1−t0) equal to 2150 ms, which
results into a DC of approximately 3.6%.

I V. E X P E R I M E N TA L E VA L U AT I O N

We have deployed the testbed on the roof of one of the
buildings of the University of Castilla-La Mancha in Ciudad
Real, Spain (38◦59’00”N, 03◦56’00”W), as shown in Figure 3,
over the period between 13:07:15 of 31 July 2018 to 12:43:11
of 4 October 2018. This area of central Spain is characterized
by a Mediterranean climate and a high solar resource. During
this period the application described in Section III executed
uninterruptedly, since the solar production during these months
was enough to feed the circuitry and to recharge the battery,
guaranteeing thus the energy neutrality of the system. As a

TABLE I
VA R I A B L E S U S E D I N T H E Dataset A P P L I C AT I O N

Variable Units Description
Date dd/mm/yy Date provided by the RTC

Time hh:mm:ss Time provided by the RTC

Load mA IoT node consumption

Battery mA Current supplied (> 0) or absorbed (< 0)

Panel mA Short-circuit current of the PV panel

Wind m/s Wind speed provided by the anemometer

Temp ◦C Ambient temperature

Hum % Relative ambient humidity

Voltage V Battery terminal voltage

result of this execution, the application generated a dataset that
comprises 93438 data records, where the records are regularly
spaced every minute. The dataset is available online at https://
github.com/arco-group/energy-harvesting-dataset.git. Next, we
analyze the dataset and show how it can be used to develop
simple prediction models of the expected solar panel production,
like in [6].

Fig. 3. Testbed installation at University of Castilla-La Mancha in Ciudad
Real, Spain (38◦59’00”N, 03◦56’00”W).

A. Dataset Analysis

This first real experiment was performed for testing purposes
and circuit validation in terms of reliability. All the variables
in the dataset were measured with a periodicity of 1 minute.
All the variables were measured directly by the DL, except the
temperature and humidity, which were measured by the IoT
node and then sent to the DL by serial connection. Note that,



however, from the perspective of the programmer, the library
described in previous section hid such a division of tasks. The
IoT node was always in active mode and Lora Radio chip was
inactive, yielding to a constant consumption of 13− 14 mA.
We show in Figures 4 and 5 the plots of all the variables in
the dataset from the entire period of deployment.

In the first graph of Figure 4, with a blue line, the curve
represents the short-circuit current of the panel which is
proportional to the energy production. Thus, it increases with
the solar irradiance and then, as observed, it draws a parabola
very similar to the daily energy production in favorable solar
conditions: it increases up to approximately the noon and
decreases up to the sunset. A better view of the solar production
is presented in Figure 6, where we represent the data from days
1 to 13 of September, aggregated (averaged) over intervals of
30 minutes. We see from this figure abrupt oscillations on the
third day, and in other days due to the presence of clouds.
The temperature follows a similar trend, while the wind and
humidity levels seems less correlated to the solar production.
It is interesting to observe very high temperatures that range
between 20 and 40 degrees, while humidity oscillated inversely
to the temperature.

Figure 5 represents in the last graph the IoT node current
(note that the DL current is irrelevant since it is connected
to the battery), the current drawn by the battery (blue line),
and battery capacity as percentage of its total capacity (orange
line). The latter variable is obtained by processing the values
in the dataset of the battery voltage. Note that since the load of
the node is low compared to the battery capacity and harvested
energy, the level of the battery is always over 90% (voltages
always ranging between 4.15 and 4.25.) The battery current
(flow), in blue, takes a negative value when the current is
supplied by the battery (discharge period) and a positive value
if the battery is absorbing current from the panel (charge
period). As observed, it follows the same daily pattern than
the production. The current required to keep the IoT node
working is approximately 13 mA, and it is consistent with the
specification of the manufacturer. This consumption represents
the sum of the individual currents of all active hardware
components that are being used and it is constant along the
period since all of them kept the same energy state.

B. Simple Prediction Model of the Energy Production

In Figure 6 we show a closer view on the solar panel
production, from 1 to 12 September. The data, collected every
1 minute have been averaged over periods of 30 minutes. We
note from the plot, that the solar energy production is affected
by the weather conditions, it decreases in cloudy days (3, 8),
while it is more regular in sunny days. The different production
curves in days (8, 11) are highlighted in Figure 7.

In [3] we develop a task scheduling algorithm to dynamically
optimize the load of the IoT node as a function of the energy
available in the battery and the expected production of the solar
panel. Like in [6], to properly optimize the node behavior, it
is mandatory to use an energy prediction model that gives an
estimation of the future expected energy production. Here, we

test the EWMA method [6], suggested in Kansal, and estimate
its error. The EWMA method is a weighted exponential moving
average of the dataset, calculated over each slot of 30 minutes.
The prediction follows this simple equation:

pt = αpt−1 + (1− α)St−1

where pt is the prediction made at the end of period t, in
our case at the end of each day, pt−1 is the old prediction
(the memory), and St−1 is the energy produced by the solar
panel measured at the end of the day; finally, α ∈ [0, 1] is a
smoothing factor that model how importance we give to the
history, with respect to the observed production in the previous
day. Note that, the above equation, must be used independently
for each slot of 30 minutes in order to develop a model for
each period of the day.

This prediction model can be evaluated by measuring its
mean square error, the optimal value of α to be used depends
on the single deployment and has been obtained minimizing
the error. Figure 8 shows the curve of the error as a function
of different choice of α, we see that the optimal value is close
to 0.863. Using this value for α we show in Figure 9 the
production (green line) vs. prediction (red line) obtained with
this method. We see that the prediction is quite accurate when
the weather is stable, but it overestimates or underestimates
the solar production sometimes.

The error is better shown in the lower plot in the same
Figure, that represents the curves of the relative error as a
percentage of the real production. Note that we represent in
the same plot two curves, the blue line (positive curve) is
a forecast that overestimates the real production, while the
orange line is the underestimation. We note, as expected, that
the error is concentrated in cloudy days, or in periods with a
higher variability of weather, or after sunset. Note also that the
forecast error could be higher than 50% of the real production,
especially in overestimation. So, even if in the curves above, it
seems that the forecast and the solar production are quite close,
Table II shows a selection of the interval in the dataset with a
relative error greater than 50%, the columns are respectively:
date and hour, the effective panel production, the forecasted
production, the absolute difference between the first two values,
and the relative error in percentage when above 50%. We
note from this table that the error is naturally higher in days
with variable weather, but also in the intervals close to dawn
(7:30am) or sunset (20:00pm). This preliminary observations
highlight that this model must be improved to support smart
IoT applications that respond in a more accurate way to the
real level of energy harvested by the solar panel.

V. C O N C L U S I O N

Despite the large number of prototypes and even installation
of IoT devices with solar energy harvesting capabilities, many
research questions such as the estimation of the forthcoming
energy production, the tradeoff between performance and
lifetime, the need for energy neutrality are still open. Many
works address these questions by proposing suitable algorithms
often evaluated on the base of models or on ad hoc datasets
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collected just for their purposes. We instead propose here an
open dataset that can be used to experiment, test and compare
different solutions. The development of such a dataset has
required the design of a suitable device, able at the same time to
run a specific IoT task and to monitor the parameters of energy
production and consumption without interfering with such a
task. This lead us to the implementation of the testbed described

TABLE II
R E A L P V PA N E L P R O D U C T I O N V S F O R E C A S T E D . A B S O L U T E

A N D R E L AT I V E E R R O R . I N T E RVA L S W I T H E R R O R G R E AT E R
T H A N > 50% .

Day/Hour Solar Forecast |P-F| |P-F|/P > 50%
Panel (EWMA) Rel. Error (%)

01 20:30 2.08 3.6 1.5 73.5%

02 08:00 12.26 19.2 7.0 57.1%

03 10:30 122.52 233.5 111.0 90.6%
03 11:30 172.96 297.8 124.8 72.2%
03 13:00 175.60 339.8 164.2 93.5%
03 20:30 1.63 2.9 1.3 83.5%

04 20:30 1.78 2.8 1.0 57.2%

05 20:30 1.40 2.6 1.2 89.6%

06 08:00 9.04 15.6 6.6 73.3%
06 08:30 33.06 51.2 18.2 55.0%
06 20:30 1.37 2.4 1.1 81.1%

07 20:00 4.96 8.9 4.0 81.0%

08 10:30 149.12 228.6 79.4 53.3%
08 11:00 158.66 259.8 101.1 63.7%
08 16:00 67.91 102.2 34.3 50.5%
08 20:00 5.31 8.4 3.1 58.6%

09 13:30 167.81 292.8 125.0 74.5%

10 08:30 29.31 46.4 17.1 58.4%
10 10:00 110.53 189.7 79.2 71.6%

12 08:00 7.00 12.7 5.7 82.0%
12 15:00 167.75 254.9 87.2 52.0%
12 20:30 0.70 1.3 0.6 94.5%

with a double, independent subsystems, one IoT node and
one for energy-related data logging. Our testbed, in turn, was
used to collect a dataset in a data collection campaign, which
is now available at this URL: https://github.com/arco-group/
energy-harvesting-dataset.git. The paper shows some analysis
conducted over the dataset to show its features and an example
of how a known algorithm for energy production estimation
would perform. As a future work we plan to extend the dataset
with further data collection campaign to be conducted over
different periods of the year, and to associate the dataset with
data obtained from public weather forecasts, which can also
be used to experiments algorithms as in [5] that use such data
to improve the solar energy prediction. Furthermore, we also
plan to continue experimenting and comparing algorithms for
energy harvesting, for example those related to the optimization
of the quality of service with respect to the energy neutrality
constraints, as in [3], [6].
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