
Experimenting Forecasting Models for Solar Energy Harvesting
Devices for Large Smart Cities Deployments

Antonio Caruso1, Stefano Chessa2, Soledad Escolar3, Xavier del Toro3, Melisa Kuzman4, Juan C. López3
1Dept. of Mathematics and Physics ”Ennio de Giorgi”, University of Salento, Lecce, Italy

2Computer Science Department, University of Pisa, Pisa, Italy
3School of Computing Science, University of Castilla-La Mancha, Ciudad Real, Spain

4University of Mar del Plata, Mar del Plata, Argentina

Abstract—To make sustainable large IoT deployments in smart
cities, a promising approach is to develop a new generation of
solar energy harvesting IoT devices based on the concept of
energy neutrality. Key to this concept are the models for the
forecast of energy production, which provide input to the energy-
neutral schedulers governing the activities of the IoT devices. The
development of such models however need to be validated against
real-world conditions. To this purpose we propose a testbed
aimed at the collection of real-world dataset about the energy
parameters of energy harvesting IoT devices, and, on the base
of such a dataset, we perform a comparative assessment of state
of the art and novel energy production forecast models.

Index Terms—IoT, testbed, dataset, solar energy harvesting,
forecasting algorithms.

I. INTRODUCTION

The fast development of Internet of Things (IoT) tech-
nologies (recent estimates expect over 50 billion of devices
connected by 2020) is rapidly investing almost all human
activities (from homes to industries), and cities are not an
exception. IoT, in combination with cloud technologies can
play a strategic role to build smart cities, due to their ability
to obtain data from the most diverse sources in a diffuse and
pervasive way and to provide fresh, high quality reports to the
rulers based on analytics on such data.

Although part of the IoT devices are currently operating un-
der the direct control of human beings (for example wearable
devices and smartphones), the largest fraction of such devices
is given by environmental sensors that operate autonomously
in unattended mode, and such a fraction is expected to grow
more and more in the future, simply because there is a limit
to the number of devices that humans can directly control.

Especially in a smart city, where any potential IoT deploy-
ment may cover a very large space and involve a very large
number of devices, it is important to make them even more
autonomous and long-lasting, to keep the maintenance costs
affordable. Under this respect, energy harvesting solutions are
expected to play a key role, and, among these, photovoltaic
panels are the most promising. IoT devices harvesting solar
energy (hereafter we will just refer them as devices) exploit
a photovoltaic panel to produce energy and a rechargeable
battery to keep an energy buffer large enough to guarantee a
continuous and potentially unlimited operation.

An essential question in the design of such devices is how
to size their battery and panel to let them never run out of
energy, which leads to the problem of making them energy

neutral [1]. The concept of energy neutrality opens a new
perspective in the optimized design of the devices, because
it allows to modulate the load, i.e. the power consumption
of the device, to match with the expected energy production.
Lots of effort have been devoted by the researchers to identify
different approaches to energy modulation, either by a suitable
scheduling of communications [2] and/or by scheduling the
sensing and processing tasks of the device, leveraging on
a forecast of the energy production [1], [3], [4]. Recent
approaches are particularly relevant for IoT devices since they
exploit the public weather forecast obtained from the Internet
to feed the solar energy production models [5].

An aspect that remains unanswered is however how these
approaches would work in practice in a real environment. To
the purpose, several research groups began developing proto-
types to be used for experimentation in real conditions. Among
these we cite [6]–[11], which, however, did not lead so far to
the production of freely available datasets that researchers can
use for the analysis and comparison of different solutions for
energy harvesting management in IoT devices.

For this reason, we have developed a new prototype, which
combines a solar-panel energy harvesting subsystem, a pro-
grammable IoT node equipped with sensors for the detection
of weather conditions, and an independent microsystem acting
as logger and capable of measuring all the energy-related
parameters of the IoT node and of the harvesting subsystem.
The IoT node can be programmed to implement different
strategies concerning the execution of the sensing task and
the management of the energy, so to experiment and compare
different solutions. We have used this device to collect a
dataset about energy production and weather conditions.

This paper presents briefly the prototype and the collected
dataset, and then focuses on the experimentation with this
dataset by analyzing the state of the art of algorithms that
exploit public weather forecasts to estimate the forthcom-
ing energy production of the solar panel. In particular, the
contributions of this work are: (i) the prototype used for
experimentation (which embeds a double subsystem, an IoT
node and a data logger); (ii) a library that abstracts the double
nature of the device to allow the programming of both the IoT
node and of the data logger with a single program; and (iii) an
experimental comparison of different production forecasting
models, including models taken from the literature and some
novel variations of such models. The remainder of this paper

is organized as follows. After reviewing the related works in
Section II, we detail in Section III the design of our testbed
from a hardware perspective. In Section IV we present an
API intended to facilitate the applications writing on top of
our testbed and describe an application so built to generate a
dataset with the periodic readings of the sensors. In Section
V we provide the results of evaluating different forecasting
models of the solar energy production. Finally, in Section VI
we draw the main conclusions and make suggestions for
further research.

II. RELATED WORKS

This section reviews firstly some of the strategies addressed
to achieve energy neutrality, which are generally evaluated by
simulation, and secondly, energy-harvesting devices used in
real deployments that may, therefore, provide accurate data to
feed algorithms with different purposes.

A. Energy-Neutral Schedulers and Algorithms

Many works in literature have contributed to achieve en-
ergy neutrality, i.e. the ability for keeping indefinitely the
device operation by means of some energy harvester (typically
solar panels) and some optimization strategy that aligns the
workload allocation with the energy availability. The first
approach from Kansal and Srivastava [12] was the allocation
of distributed tasks among the harvesting devices of a network
according to their energy level. The same authors proposed
years later in [5] to maximize the performance of the devices
by dynamically scaling their duty cycles. This proposal was
validated by means of a real experiment where an Heliomote
platform (based on a Mica2 mote) was deployed on a resi-
dential area in Los Angeles and that ran uninterruptedly for
67 days during the summer of 2005. The results demonstrated
that the application used an adaptive duty cycle close to the
optimum. LSA [13] is an optimal real-time scheduling algo-
rithm that finds the feasible optimal schedule where the task
deadlines can be met. By simulation the authors demonstrate
the feasibility of their approach providing how many tasks
and in which order they will be executed, and quantify the
overhead imposed by the scheduler on a BTnode mote.

We have addressed the energy neutrality problem in a
progressive manner. In our first work [14] we consider an
only energy harvester device and a basic task model where
each task has a quality related to its sampling frequency. A
scheduler found an assignment of tasks to time-slots over the
reference period such that the overall quality was maximized
in that period. The decision about which task is assigned to
the slot i + 1 is made at the end of slot i depending on
the battery level, which is computed as a function of the
real production in past and current slots, the consumption of
the applications already executed, and an estimation of the
energy production in the forthcoming slots. This work was
later extended in [15] with a more refined task model, where
each task has an execution time, a weight, a period, and where
several scheduling plans are built on the basis of a set of these
tasks. The quality of an scheduling plan is optimized under the

constraint of energy neutrality. Here, our scheduler assigned
initially the most efficient scheduling plan to all the slots
and then followed a greedy strategy to upgrade (increase) or
downgrade (decrease) the quality of the assignment depending
on the energy produced and the battery level in that slot.
In [16], [17] we extend the scenario to networked devices,
first a sensor and a sink and then a star-connected network,
where the scheduler keeps energy neutrality and maximizes the
quality of all devices. To do that, the devices share their battery
levels, energy productions and assignments, and a centralized
scheduler recomputes their assignments accordingly. In [3] we
consider an only harvester device and propose an scheduler
that finds the optimal assignment that maximizes its overall
utility while guarantees energy neutrality, where utility is a
measure of the degree in which the application satisfies the
user requirements, based on the idea that the same function
can be implemented with different utility degrees, and a larger
utility requires a larger energy consumption. We prove that
finding such assignment is an NP-problem and show, by
simulation, the optimal assignment that guarantees energy
neutrality by assuming the hardware features of three popular
IoT platforms: Raspberry PI, Arduino and TMote.

B. Energy Harvesting Devices in Real Deployments

Most of the works pursuing energy neutrality are evaluated
by means of simulations, which model on one hand, the
energy states of the hardware components of the device for
estimating its consumption and, on the other hand, the energy
production that will permit increase (or decrease) its energy
availability. The solar energy, generally employed as energy
source, is uncontrolled but predictable, which means that it
is not possible to know in which moments and how much
energy will be generated, but however its behavior can be
modeled for prediction with some error margin. Thus, the
energy production used is generally an estimation of the
production based on the ideal daily production, which may
be reduced by the presence of clouds, shadows, and other
meteorological events that are not generally included in the
simulations. Even when these events are introduced in the
simulation, the evaluation lacks of the realism that we find
in a real deployment. This fact motivates the need of using
real testbeds for collecting data of energy production that can
serve as basis for algorithms with different purposes, as finding
the optimal scheduling and energy predictions. For example,
in [18] is described the testbed ViSE equipped with an x86-
processor, sensors, and a weather station that includes a wind
turbine and a solar panel. The data collected from the weather
station together with observational and forecast data from the
National Weather Service enable to predict the power output
from the solar panel/wind turbine. This work demonstrates that
the forecasts may predict the future better than the immediate
past does. The results show small differences between the
prediction and the real power generated and an outperformance
of 25% better with regard to the prediction done by PPF (past
to predict the future). In [19] the authors use TelosB motes
equipped with photovoltaic cells and wind micro turbines

Fig. 1. The testbed.

for defining multi-source energy prediction models that are
based on past energy observations to forecast future energy
availability. The authors of [5] employ Waspmotes equipped
with several sensors, a LoRa communication module, a battery
and a solar panel to implement several machine learning
methods to predict the solar power based on available weather
public data. The three works have online published the dataset
collected as result of their deployments. Differently to these
works, we propose here a device specifically designed for
evaluating different energy harvesting algorithms and we use
the data collected during a real deployment for analyzing
algorithms that use public weather forecasts to estimate the
solar panel energy production.

III. TESTBED DESCRIPTION

The testbed has been designed to provide a flexible and
modular tool for the experimentation of different energy har-
vesting solutions. To this purpose it combines two independent
microsystems, namely a full IoT device programmable to
implement different energy management strategies and an ad-
ditional data logger that independently records energy-related
parameters (about the battery and the harvesting subsystem)
while the IoT node is working (Figure 1 highlights the main
components of the testbed). The testbed also comprises an
energy harvesting subsystem that is currently based on a solar
panel but that can be extended to include other harvesting
sources (for example wind turbines), and a library that can
be used to speed up the development of different energy man-
agement solutions. Note that the two subsystems have separate
power supply, so to avoid interferences in the measurement of
the energy-related parameters by the logger.

From the point of view of processing, the current version of
the IoT node is powered by an Adafruit Feather M0 [20] with
a RFM95 LoRa radio chip. This module offers 20 general
purpose I/O pins, with up to 10 analog input pins. For our
experimentation we have configured the IoT node with a
serial line connecting to the data logger, a temperature and
a humidity sensor, and power supply from the rechargeable
battery which, in turn, is refilled by means of an energy
harvesting subsystem based on a solar panel.

The data logger is also implemented with an Adafruit
Feather M0 with a RFM95 LoRa radio chip. The data logger
measures the currents and voltages of the IoT node (to obtain
its power consumption), of the rechargeable battery and of the
solar panel. Each measured data is associated by the logger to a
time stamp. The logger also estimates the solar irradiance by a
latched mini relay that measures the short-circuit current of the
panel. Finally, the data logger also has an OLED monochrome
display to show the current system state.

The energy harvesting subsystem is currently designed with
a 2 Watts photovoltaic solar panel [21] (the energy harvester),
a solar charger (to operate the power conversion) and an energy
storage based on a lithium rechargeable battery. The solar
panel, which is designed for outdoor applications, provides
a nominal current of 340 mA with an output voltage of 6.5 V
(i.e. maximum power point in standard conditions).

The solar charger can provide the output power to the
battery or directly to the load. In particular, it powers directly
the load (i.e. the IoT node) if the harvested energy is sufficient
(and the surplus of energy is directed to recharge the battery, if
necessary). Otherwise, if the requirement of the load is higher
than the harvested energy the necessary power is supplied
by the battery. The rechargeable battery has a capacity of
2000 mAh with a nominal voltage of 3.7 V, and the output
ranges from 4.2 V (when fully charged) to 3.3 V (when fully
discharged).

IV. API AND DATASET DESCRIPTION

As previously mentioned, the ultimate goal of the testbed
described in Section III is to support and evaluate the unin-
terrupted execution of a wide variety of outdoor monitoring
applications, with different energy requirements and under dif-
ferent meteorological conditions, by using as energy harvester
a solar panel. To the purpose of building these applications,
we have developed a function library on the microprocessor
Adafruit Feather M0 by using the development environment
Arduino 1.8.7. The software library has been designed to
support software development on top of our testbed in a
simple way, by hiding the programmer the hardware details, in
particular, the existence of two microsystems embedded into
the platform, i.e. the IoT node and the data logger as well as
the specialization of tasks carried out by each one of them.
Thus, the library offers the programmer an abstract view of the
prototype as a single device, and thus with a single program it
is possible to control both the IoT device and the data logger.
At compilation time the functions are then partitioned over the
two microsystems.

The library comprises a set of 26 functions that cover both
the sampling activities from the IoT node and the sampling
activities from the data logger, through the different sensors
that they integrate (current, voltage, temperature, wind of
speed, and humidity), storing into an SD card, communication
by using LoRa technology (note that at this moment of
development only LoRa communication has been supported),
energy harvesting from a solar panel and energy storing by
means of a 2000 mAh Li-Po battery. The library is open source

TABLE I
PROTOTYPE OF THE LIBRARY FUNCTIONS.

Prototype Description

int initializeRTC(void) Initialize the Real Time Clock (RTC)
void adjustRTC(void) Adjust the time for RTC
void getTime(void) Returns the time from RTC

int initializeLoRa(void) Initialize the LoRa communication module
int sendLoRa(String) Send data through LoRa module
String recvLoRa(void) Receive data from Lora module

float getTemperature(void) Read the temperature value (◦C)
float getHumidity(void) Read the humidity value (%)
float getSpeedOfWind(void) Read the wind speed from anenometer (m/s)
float getBatteryVoltage(void) Read the battery voltage (V)
void initINA0(void) Initialize the current sensor INA0
void initINA1(void) Initialize the current sensor INA1
void initINA2(void) Initialize the current sensor INA2
float getLoadPower(void) Read the load power from INA1 (mW)
float getBatteryPower(void) Read the battery power from INA2 (mW)
float getPanelPower(void) Read the panel power from INA0 (mW)
float getLoadCurrent(void) Read the load current from INA1 (mA)
float getBatteryCurrent(void) Read the battery current from INA2 (mA)
float getPanelCurrent(void) Read the panel current from INA0 (mA)

int initializeSD(void) Initialize the micro SD
int open (String, int) Open a file to read/write on micro SD
void close(void) Close a file
void writeline(String) Store data on micro SD
String readline(void) Read a line from the micro SD

void initializeDisplay(void) Activate the OLED monochrome display
void displayOLED(String,String) Display a title and a text on the OLED display

and it is available online at: https://github.com/arco-group/
energy-harvesting-dataset.git. Table I presents the prototype
of the functions included in our library.

By using this library we have developed several IoT appli-
cations on top of our testbed; in particular, we highlight an
application that generated a dataset by sampling periodically
each sensor and writing these data into the SD memory card.
The data collected include information in terms of time stamp,
energy resource, battery state, node consumption and meteo-
rological conditions: Date (dd/mm/yyyy), Time (hh:mm:ss),
Load (mA), Battery (mA), Panel (mA), Wind (m/s), Tempera-
ture (◦C), Humidity (%), and Voltage (V). The values of Load,
Battery, and Panel correspond to the currents of the IoT node
consumption, battery supplied (if > 0) or absorbed (if < 0)
and the short-circuit current of the photovoltaic panel, which
is proportional to the energy production. The testbed ran this
application for a preliminary data collection campaign con-
ducted in Ciudad Real (Spain), from July 31st to October 4th,
2018. The testbed operated in this period without interruptions,
collecting all energy-related data and environmental data with
a sampling period of 1 minute. The resulting dataset comprises
over 93438 data records, it is public and it can be downloaded
at https://github.com/arco-group/energy-harvesting-dataset.git.

The first four graphs in Figure 2, represent respectively
the production in mA of the solar panel, the temperature, the
wind speed and the humidity levels across the entire dataset.
The plots below represent the curve of the current flowing
into (negative) and out (positive) from the battery, the battery
residual level (as percentage of its capacity) and the load on
the IoT node. Since the application running in the node simply

collect, regularly in time, some environmental data, the load
in the node is mainly constant.

0

200

400

(m
A)

Panel

20

40

(°
C)

Temperature

0

5

10

(m
/s

) Wind

Aug 01 Aug 08 Aug 15 Aug 22 Aug 29 Sep 05 Sep 12 Sep 19 Sep 26 Oct 03

50

100

Le
ve

l (
%

)

Humidity

0

100

200

(m
A)

Battery Current Flow

95

100

(L
ev

el
 \%

)

Battery Percentage

Aug 01 Aug 08 Aug 15 Aug 22 Aug 29 Sep 05 Sep 12 Sep 19 Sep 26 Oct 03

15

20

(m
A)

Node Load

Fig. 2. Plot of all values of the dataset. The solar panel production (mA),
the temperature (°C), wind speed (m/s) humidity level (%), and Battery Flow
(mA), Battery Level (%), and Node load (mA).

V. EXPERIMENTAL RESULTS

A key ingredient in the design of an energy neutral IoT node
is a good scheduling algorithm, capable of dynamically adapt
the node load taking into account not only the actual amount
of energy harvested by the solar panel, but also the expected
energy in the future. We already reviewed in Section II some
of them. A scheduling algorithm run periodically in the node,
and define a set of possible parameters that affect its load:
i.e. the frequency of duty-cycling, the sampling-rate, the radio
transmission power and the amount of data processing.

The optimization of these parameters act at different levels:
the lowest levels require high frequencies decisions, for exam-
ple tuning the radio at the level of a single packet transmission;
while the higher levels act on more long term parameters,
that can remain constant over longer time windows, like the
duty cycle of the application or the sampling frequency of

sensors. The variation in the energy harvested is limited over
short intervals of time, most algorithms run periodically, using
a limited time horizon (typically a day) divided in shorter
periods like 30 minutes.

We aggregated (averaged) over periods of 30 minutes all
values in the dataset. Since the solar panel production exhibits
a typical daily seasonality, we plotted in Figure 3 the average
of the production over all days at the same half-hour, from 6:30
to 21.30; the vertical red bars represent the standard deviations
in the series, i.e. its variability across different days. The plot
shows an expected daily pattern: the energy produced, that
clearly depends on the position of the Sun (and the relative
position and orientation of the solar panel), steadily increases
after 6:30 at sunrise, reaches its maximum at midday and
starts to decrease until it becomes zero after sunset. Temporary
weather conditions like passing clouds affect the variance in
the production especially at peak hours, and in the afternoon
after 16:00 when the Sun starts to be less perpendicular to the
panel, lowering its efficiency until it rapidly drops to zero.

06:30 09:00 11:30 14:00 16:30 19:00 21:30
time

0

50

100

150

200

250

300

350

So
la

r P
an

el
 C

ur
re

nt
 (m

A)

Solar Panel

Fig. 3. Plot of the mean solar energy production every 30 minutes, the vertical
red bars are the deviations from the mean.

A. Forecasting Models

As a preliminary step in the direction of studying the per-
formance of different scheduling algorithms, we focused this
Section on testing the performances of different forecasting
models. We review some of them, moving from the simplest to
the more complex, several forecasting models are statistically
based, i.e. they consider the past as a key indication of
what could happen in the future. Consider the time series
of the energy production until time t, the simplest possible,
statistically based, forecast model, that we call previous half-
hour just compute the forecast yt+1 = xt, i.e. it forecasts for
the next half-hour the same production of the last 30 minutes.

The quality of any forecast model can be evaluated by
computing the root mean square deviation (RMSD) i.e.√
E[(xi − yi)2], and dividing by the maximum of the pro-

duction (360 mA) we get a percentage of error, that is simple
to reason about. With our dataset, previous half-hour has a
surprising small error of 9.24% that we use as a baseline. Note

TABLE II
FORECASTING MODELS AND RMSD FOR EACH OF THEM

Previous Half-Hour 9.24%
Previous Day 8.42%

(0.448, 0.551) Averages of Above 6.63%
EWMA (Kansal) 6.34%
Scaled EWMA 5.97%

that this depends on the nature of our dataset that comprises
only a few months in summer. Another simple model is to use
the values observed in the previous day, so yt+1 = xt−48 or
an average between the previous day and the last half-hour.

In Kansal [12] the exponential weighted average of all
previous days is used together with the value observed at
the end of the previous 30 minutes as the forecast: i.e. they
use yt+1 = αxt + (1 − α)yt−48, i.e y stores the weighted
averages of the solar panel production in the same slot for all
the days in the dataset. The optimal parameter 0 < α < 1
that affects the weight of the current vs the past observations
on the forecast is numerically optimized. The relative errors
of all this statistically based methods are reported in Table II,
and as shown, the baseline is improved from 9.24% to 6.34%.
Other statistically based methods like EWMA [1], EEHF [12],
or Enhanced-EEHF [22] try to rapidly adapt the forecast to the
abrupt changes caused by sporadic clouds.

Another class of models that will take on the utmost impor-
tance, exploits the connectivity to the Internet, both directly
and through fog or edge devices, to download a weather
forecast for the next day and use it to directly affect some
statistics-based model, or to implement machine learning-
based forecasting models. Since that we did not have the
opportunity to collect weather forecasting in the days of the
experiment, we used the historic forecast provided by the
online service AEMET (The Spanish Meteorological Agency).
We found that the solar energy production is not directly
correlated to these variables, but the second order difference of
the forecasted maximum temperature is sufficiently correlated
to the solar panel production as shown in Figure 4.

We present here a very simple forecasting model built
on an scaled EWMA. We use the change of the maximum
temperature to scale the EWMA forecasting appropriately,
in particular, we use the second order difference of the
temperature. If at time t, (the end of a day) we denote with
Mt the forecast of the maximum temperature for the next
day, and given M

′

t =Mt−Mt−1 and M
′′

t =M ′t+1−M
′

t , we
compute a forecast for the expected panel production simply as

yt+1 = EWMAt+1 ∗ (1 ± |M
′′
t |

100) with a positive correction
if the M ′′ increases and negative if it decreases. Even this
simple model is able to better adapt the EWMA forecast to
the changing weather conditions, lowering the error to 5.97%.
All values of the relative errors for all forecasting models are
reported in Table II.

2018-08-01 2018-08-11 2018-08-21 2018-08-31 2018-09-10 2018-09-20 2018-09-30
Data

8

6

4

2

0

2

4

6 Solar Panel ()
Max Temperature ()

Fig. 4. Plot of the (second order) changes in the Solar Panel Production vs
the Forecasted values of the maximum Temperatures.

VI. CONCLUSION

This paper presents the initial stage of a long-term research
activity aimed at the systematic creation of datasets for the ex-
perimentation of energy harvesting solutions for IoT devices,
and at the consequent systematic assessment of models and
algorithmic solutions for the management of such devices.

In the current stage we have developed a device composed
of three subsystems: an energy harvester with a rechargeable
battery, a programmable IoT device (at this time collecting
weather-related data) and a data logger for the real-time
collection of several energy-related parameters of the energy
harvester and of the IoT device. We have used this device
to perform a first campaign of data collection that resulted
in a first dataset over which we conducted an experimental
comparison and validation of several energy production fore-
casting models. The next steps will aim at the consolidation
of this dataset, by running several data collection campaigns
over different periods of the year and in different weather
conditions, and in the collection of weather forecast data from
public channels to complement the dataset. We expect that the
final dataset will result a valuable asset to experiment different
solutions for energy harvesting IoT, including energy-neutral
schedulers that exploit the weather forecasts to optimize the
energy management. In some cases, the scheduler and a
more advanced class of weather forecasting models based on
machine learning cannot run directly on the nodes. The correct
placement of these computations, in the edge devices or in
the cloud, represent another important design decision that we
would like to explore in the future.

ACKNOWLEDGMENT

This work has been partly funded by the Spanish Ministry of
Economy and Competitiveness under projects PLATINO (TEC2017-
86722-C4-4-R) and CitiSim Itea3 (TSI-102107-2016-8 ITEA3 Num.
15018) and by the Regional Government of Castilla-La Mancha under
project SymbIoT (SBPLY/17/180501/000334).

REFERENCES

[1] A. Kansal, J. Hsu, S. Zahedi, and M. B., Srivastava, “Power Management
in Energy Harvesting Sensor Networks,” ACM Trans. Embed. Comput.
Syst., vol. 6, no. 4, Sep. 2007.

[2] G. Amato, A. Caruso, and S. Chessa, “Application-driven, energy-
efficient communication in wireless sensor networks,” Computer Com-
munications, vol. 32, no. 5, pp. 896–906, 2009.

[3] A. Caruso, S. Chessa, S. Escolar, X. del Toro, and J. C. López, “A
Dynamic Programming Algorithm for High-Level Task Scheduling in
Energy Harvesting IoT,” IEEE Internet of Things Journal, vol. 5, no. 3,
pp. 2234–2248, June 2018.

[4] S. Escolar, A. Caruso, S. Chessa, X. del Toro, F. J. Villanueva, and J. C.
López, “Statistical Energy Neutrality in IoT Hybrid Energy-Harvesting
Networks,” in IEEE Symposium on Computers and Communications
(ISCC). IEEE, June 2018, pp. 444–449.

[5] F. A. Kraemer, D. Ammar, A. E. Braten, N. Tamkittikhun, and D. Palma,
“Solar Energy Prediction for Constrained IoT Nodes Based on Public
Weather Forecasts,” in Proceedings of the Seventh International Confer-
ence on the Internet of Things. New York, NY, USA: ACM, 2017, pp.
2:1–2:8.

[6] G. Jackson, S. Kartakis, and J. McCann, “Accurate Models of Energy
Harvesting for Smart Environments,” in IEEE International Conference
on Smart Computing (SMARTCOMP), May 2017, pp. 1–7.

[7] L. Borin, M. Castro, and P. D. M. Plentz, “Towards the Use of LITMUS
RT as a Testbed for Multiprocessor Scheduling in Energy Harvesting
Real-Time Systems,” in VII Brazilian Symposium on Computing Systems
Engineering (SBESC), Nov 2017, pp. 109–116.

[8] S. Bader and B. Oelmann, “A concept for remotely reconfigurable solar
energy harvesting testbeds,” in 2017 IEEE SENSORS, Oct 2017, pp. 1–3.

[9] A. K. R. Venkatapathy, M. Roidl, A. Riesner, J. Emmerich, and M. ten
Hompel, “PhyNetLab: Architecture design of ultra-low power Wireless
Sensor Network testbed,” in IEEE Symposium on A World of Wireless,
Mobile and Multimedia Networks (WoWMoM), June 2015, pp. 1–6.

[10] S. Rao and N. B. Mehta, “Hybrid Energy Harvesting Wireless Systems:
Performance Evaluation and Benchmarking,” IEEE Transactions on
Wireless Communications, vol. 13, no. 9, pp. 4782–4793, Sep. 2014.

[11] M. Masoudinejad, J. Emmerich, D. Kossmann, A. Riesner, M. Roidl, and
M. ten Hompel, “Development of a measurement platform for indoor
photovoltaic energy harvesting in materials handling applications,” in
The 6th Int. Renewable Energy Congress, March 2015, pp. 1–6.

[12] A. Kansal and M. B. Srivastava, “An environmental energy harvesting
framework for sensor networks,” in Proceedings of the International
Symposium on Low Power Electronics and Design, ser. ISLPED ’03.
New York, NY, USA: ACM, 2003, pp. 481–486.

[13] C. Moser, J. Chen, and L. Thiele, “Dynamic power management in
environmentally powered systems,” in 15th Asia and South Pacific
Design Automation Conference (ASP-DAC), Jan 2010, pp. 81–88.

[14] S. Escolar, S. Chessa, and J. Carretero, “Optimization of Quality of
Service in Wireless Sensor Networks Powered by Solar Cells,” in IEEE
10th International Symposium on Parallel and Distributed Processing
with Applications, July 2012, pp. 269–276.

[15] S. Escolar, S. Chessa, and J. Carretero, “Energy management of net-
worked, solar cells powered, wireless sensors,” in Proceedings of the
16th ACM international conference on Modeling, analysis & simulation
of wireless and mobile systems. ACM, 2013, pp. 263–266.

[16] S. Escolar, S. Chessa, and J. Carretero, “Energy-neutral networked
wireless sensors,” Simulation Modelling Practice and Theory, vol. 43,
pp. 1–15, 2014.

[17] S. Escolar, S. Chessa, and J. Carretero, “Quality of service optimization
in solar cells-based energy harvesting wireless sensor networks,” Energy
Efficiency, pp. 1–27, 2016.

[18] N. Sharma, J. Gummeson, D. Irwin, and P. Shenoy, “Cloudy computing:
Leveraging weather forecasts in energy harvesting sensor systems,” in
7th Annual IEEE Communications Society Conference on Sensor, Mesh
and Ad Hoc Communications and Networks, June 2010, pp. 1–9.

[19] A. Cammarano, C. Petrioli, and D. Spenza, “Online energy harvesting
prediction in environmentally powered wireless sensor networks,” IEEE
Sensors Journal, vol. 16, no. 17, pp. 6793–6804, Sep. 2016.

[20] Microchip, “ATSAMD21G18,” https://www.microchip.com/
wwwproducts/en/ATsamd21g18, 2018.

[21] Voltaic Systems, “2 Watt Solar Panel,” https://www.voltaicsystems.com/
2-watt-panel, 2019.

[22] K. Kinoshita, T. Okazaki, H. Tode, and K. Murakami, “A data gathering
scheme for environmental energy-based wireless sensor networks,” in
5th IEEE Consumer Communications and Networking Conference, Jan
2008, pp. 719–723.

