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Abstract

High-Level Synthesis (HLS) provides a simple way to implement complex applications using Field Pro-
grammable Gate Array (FPGA) devices. Unfortunately, this technology introduces non-negligible problems
related to verification: speed, accuracy and behavior mismatch between co-simulation and implementation.

This paper presents RC-Unity, a heterogeneous unit testing framework that integrates FPGA-in-the-loop
devices in order to extend the scope and capabilities of current HLS tools. Verification engineers can focus
on the design of the tests while the framework automates the generation of the underlying verification
infrastructure, making the testbed reusable across different stages of the design flow as the experiments
show.
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1. Introduction

The evolution of Systems-On-Chip (SoC) requires
new design tools to reduce the design gap and make
an optimal use of the different processing technolo-
gies embodied in the newest devices. It is also neces-
sary to handle the complexity of the hardware design
process efficiently [1]. This is the aim of High-Level
Synthesis (HLS) tools, which increase the designer’s
productivity when building specialized hardware ac-
celerators, thanks to the use of High-Level Languages
(HLLs), such as C, to describe the algorithms. The
use of HLLs is becoming widespread in the hardware
realm, since engineers can work at higher abstraction
levels when the requirements can be fulfilled without
the cumbersome, low-level, manual traditional hard-
ware design process. The main benefits of this ap-
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proach are higher adaptability to changes, faster de-
sign space exploration or shorter time-to-market [2].

Unfortunately, despite these recent advancements
in digital hardware design, there is still a significant
gap as regards the needs in the area of design verifi-
cation. Latest studies conclude that hardware verifi-
cation is the bottleneck in most projects, where up to
70% of design time is spent on those tasks [3], mainly
due to the number of logic and functional bugs not
detected in pre-silicon validation and the gap between
pre-silicon and post-silicon validation targets, where
pre-silicon target is a model of the design rather than
an actual silicon artifact [4]. If we focus on the HLS
development flow, these are some of the problems
that need to be solved:

1. On-board verification is ignored by most HLS
tools, which only offer a co-simulation environ-
ment in order to check the correctness of hard-
ware designs described with an HLL, reusing the
initial functional software tests.
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2. The HLS report is not fully accurate, since it al-
ways reports the worst case, which may be an
unrealistic scenario. On top of that, most HLS
tools are not able to provide timing informa-
tion for those algorithms that contain undefined
bounds in loops.

3. The engineer’s experience plays an important
role in achieving the best solution. An expert
knowledge of the concrete problem may avoid
extra design space exploration iterations and er-
ror savings through the whole and costly devel-
opment flow.

Therefore, current HLS tools fail to ensure the de-
sign correctness once it is deployed on a real device.
Currently, tests must be ported to the deployment
infrastructure, which is an error-prone task because
of its manual nature, and an ad-hoc verification plat-
form must be built for each development in order to
validate the implementation. Moreover, the valida-
tion of hardware designs introduces new demands be-
yond simple checking of functional correctness via the
comparison of the outputs against a golden model:
for instance, to ensure that the performance param-
eters (e.g., latency, throughput) of the hardware are
within a range.

In this paper, we propose a verification framework
based on software testing techniques and reconfig-
urable computing to validate hardware modules gen-
erated using HLS tools. Our proposal considers the
verification of a hardware module once it has been
deployed on the actual execution platform as part of
the process. Thus, we propose a response to the chal-
lenges previously identified concerning the validation
of specialized hardware accelerators. To achieve the
main objective our approach provides the following
contributions:

• A single testing framework to validate the be-
havior of a Design Under Test (DUT) from the
HLL description to the deployment, using asser-
tion macros and enabling a grey-box verification
strategy to check intermediate results in a hard-
ware design.

• An extension of functional test to consider some
physical parameters of the design in the verifica-

tion flow. By the use of configuration macros,
designers are able to configure the hardware
environment in accordance with their require-
ments.

• A library of verification overlays, which are pre-
defined hardware verification environments for
several types of DUT interfaces. These overlays
save designers from building a custom verifica-
tion environment for each specialized hardware
accelerator.

• DUTs are network accessible. Through a verifi-
cation service layer based on a remote interface,
engineers can exercise the DUTs from their own
workstations.

This paper is organized as follows. Section 2 de-
scribes the current status in the field of system and
component verification using reconfigurable technol-
ogy. Section 3 introduces the foundations of the pro-
posed hardware testing framework before analyzing
in detail the architecture and implementation of RC-
Unity in Section 4. In Section 5, a qualitative and
quantitative study on the impact of the proposed so-
lution is conducted. Finally, Section 6 summarizes
the principal outcomes of our approach and proposes
directions for future work.

2. Related Work

In-hardware verification of system components is
an active area of research in reconfigurable technol-
ogy [3]. Most of the works reviewed aimed to provide
partial solutions to the verification problem, mainly
focusing on the development of the testing infrastruc-
ture once the IP has been implemented. Therefore,
works such as [5] [6] and [7] propose several FPGA-
based testing platforms, with special emphasis on the
communication infrastructure. However, unlike our
approach, these solutions are quite dependent on the
underlying ad-hoc architecture, making it difficult to
reuse them in future projects.

Some works, such as [8] and [9], follow a more holis-
tic approach to the verification challenge of FPGA-
based systems, and offer solutions that go beyond

2



the mere implementation level, extending the func-
tionality of the testing platform and spanning across
more than one design abstraction level. For exam-
ple, [8] leverages the use of high-level artifacts al-
ready present in System Verilog and SystemC, allow-
ing the functional verification of the design through
co-simulation, in a pure software domain, and then
verified through co-emulation after the implementa-
tion of the hardware part in a specific hardware em-
ulator.

The emulation strategy, as stated in [10], can also
support the verification of FPGA designs at different
concretion levels (e.g., bus functional models versus
the actual system bus) for both the DUT and other
system components. However, this strategy implies
an important effort overhead when it comes to the de-
velopment and maintainability of the testing frame-
work.

The solution presented in this paper shares the
UVM (Universal Verification Methodology) vision,
which advocates for a neat separation between the
generator of the input test vectors (stimuli) and the
verification environment. This means that the in-
terface between the DUT and the rest of the test-
ing infrastructure is kept unmodified, regardless of
the stage of the design, making the testbed reusable.
Some works, such as [11] and [9], propose in-hardware
verification environments inspired by the principles
of UVM. The automated generation of the environ-
ment, an interesting feature which is also supported
by our solution, is also proposed by Podivinski et al.
in [12]. Nevertheless, UVM is a complex verification
methodology that requires experienced verification
engineers to build verification environments. Con-
sequently, several works such as [13] and [14] pursue
the simplification of the operational effort of UVM-
inspired solutions by promoting the reuse of the tests
through the entire verification flow, independently of
the abstraction level. This test reusability feature is
included in our solution.

One of the major challenges of in-hardware verifica-
tion of HLS-generated designs is to provide a means
with which to increase signal visibility beyond the
barrier that represents the top-level function or en-
try point to the design. Therefore, the design must
be instrumented so that the designer can actually see

what is happening behind the scenes. Goeders et
al. describe in [15] a comprehensive hardware mon-
itoring system that traces a set of signals once the
HLS circuit has been synthesized. Even though the
functionality of the monitoring infrastructure exposes
interesting features, and it is highly optimized, in-
strumentation at such a low level handicaps the un-
derstandability and traceability of the root cause of
the problem back to the high-level model. For this
reason, [16] and [17] propose a monitoring strategy
at HLS level, allowing an easier method to identify
when and where a mismatch between the expected
and reference values occurs. However, the price to be
paid comes in the form of resource and latency over-
heads as a consequence of the modification of the
original HLS code, compared to HDL-based moni-
toring methods. [16] performs worse in this aspect,
since it forces the inclusion of memories and logic to
store and retrieve signal values. In contrast, [17] fol-
lows a less intrusive approach to identify performance
bottlenecks without the need for bitstream genera-
tion, although a cycle accurate solution is possible.
[17] uses source-to-source transformation techniques
to add tiny monitors inside the DUT that measure
and store the time of nested modules to obtain cycle-
accurate timing results. Our approach differs from
both [16] and [17] in the avoidance of the use of in-
ternal memories to monitor the behavior of the DUT.
Thus, the probes are driven outside the component
through an adapter, so an external component in-
terprets these probes and determines the action to
perform: continue to run the execution or stop it.

Finally, it is worth mentioning a family of works
devoted to supporting Assertion-based Verification
(ABV) for reconfigurable designs through the imple-
mentations of HLS techniques to efficiently support
in-circuit assertions [18]. These works extend the
functionality of the hardware monitors in order to
perform on-line value checking of the overseen vari-
ables. Memory requirements are reduced, since only
the registration of the mismatch events is needed.

3. RC-Unity Testing Framework

In order to lead the whole verification process by
means of a single testing framework, Unity is pro-
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posed, due to its simplicity and expandability [19].
Unity is fairly portable across unalike platforms, such
as 8-bit microcontrollers or 64-bit processors, since it
is written in ANSI C. Unity, like most testing frame-
works, provides a variety of assertions that can be
placed along the test to verify the production code.

For instance, the TEST ASSERT EQUAL(expected,

actual) macro checks the equality between two val-
ues: expected and actual. Therefore, designers can
use a set of assertions provided by testing frameworks
in order to check the correctness of all functions that
contain their projects by comparing output values
with reference ones [19].

Following the testing frameworks typically used for
the validation of software programs, and the fact
that HLS is very widespread in the industry [3], it
is interesting to apply testing framework facilities to
HLS design of hardware accelerators, hence a testing
framework adaptation process is necessary to meet
the new requirements resulting from the nature of
hardware developments. Unlike current testing ap-
proaches in HLS tools, software testing frameworks
allow the checking of individual functions, providing
a better understanding of the insight of the design.
Note that functions might be called by other func-
tions, building a calling hierarchy. Our solution, RC-
Unity, includes some facilities that allow designers to
verify hardware designs through the top-level func-
tion, establishing different checkpoints and retrieving
the intermediate values generated by the system.

3.1. Verification flow

Figure 1 represents an overview of the three stages
or domains described below. The main key is to sep-
arate the tests from the final implementation of the
DUT in order to achieve a double goal: to reuse part
of the original tests, adding a configuration for on-
board testing, and to abstract the complexity of the
digital hardware design. The test runner is responsi-
ble for executing the collection of the tests, but with
the particularity that it does not directly interact
with the DUT when it is running on an FPGA. In-
stead, the test runner uses a virtual agent of the DUT
to bridge it with the tests (see Figure 1).

Software verification stage. The verification
flow starts from the high-level description of a hard-

Figure 1: Big picture of our proposed approach

ware design, exercising the top-function and the
nested ones, or in other words exercising the Design
Under Test (DUT) from the top-function. Although
nested functions can be tested individually due to the
software flexibility, it is not recommended, because
the final component generated has an interface in ac-
cordance with the top-function. Sections 3.3.1 and
3.3.2 propose a solution to overcome this restriction
with small components that minimally alter the orig-
inal component, as the case studies section shows. In
this stage, the RC-Unity uses the assertions of Unity
because designers actually check the C code.

Co-simulation stage. Once the high-level de-
scription of the hardware design is tested in a purely
software domain, an HLS tool translates the high-
level code into an RTL description. In this work we
use Vivado HLS from Xilinx. At this stage, designers
can run the tests previously defined to check the top-
function (software tests) over the RTL model without
any change, but now the DUT is running on a simu-
lator (co-simulation stage).

On-board verification stage. The last stage
should be to verify the hardware design on the FPGA
but, unfortunately, designers must manually build
a custom architecture around the DUT in order to
check the correctness of the hardware design. How-
ever, in this paper, we propose an automated solution
for these tasks. It is based on a library that is com-
posed of different overlays (see Section 4), which can
be configured and managed during the testing process
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Table 1: Macros of the RC-Unity testing framework

Macro Description

RCUNITY RESET Sets the DUT to a well-known state
RCUNITY CONF CLK EN(time) Configures the time available to perform a operation. By default 0 (it means no limit of time)
RCUNITY START Enables the DUT during the time depicted in RCUNITY CONF CLK EN macro
RCUNITY CONF CLK RATE(rate) Configures the clock rate to perform a operation. By default 100 MHz
RCUNITY CONF START FLAG(num) Modifies the moment to start the internal counter that measures the time elapsed by a opera-

tion. By default 1
RCUNITY CONF STOP FLAG(num) Modifies the moment to stop the internal counter that measures the time elapsed by a operation.

By default 1
RCUNITY CONF FU(num) Modifies the moment to start and stop the internal counter in accordance with the FU under

test
RCUNITY CONF BREAKPOINT(selID) Selects the explicit breakpoint to stop the DUT task. By default 0 (none selected)
RCUNITY CONF FREEZE(bp) Freezes the DUT when the bp breakpoint (ID of breakpoint) happens. By default is deactivated
TEST ASSERT TIME XX(expected) Compares the time obtained and expected value in accordance with the comparison operator

from the testbed. That means that test cases config-
ure the hardware environment before exercising the
DUT (see Table 1).

Thus, a testing tool (dut testing) is provided to
test the design in a particular domain, so that design-
ers can use it to check their designs automatically by
executing the dut testing tool with the sim cosim

fil options, which means a complete testing pass-
ing through the three verification stages: software,
co-simulation and on-board.

3.2. On-board Verification

At this stage we introduce some novel contribu-
tions that facilitate the configuration tasks, extend-
ing the Unity testing framework with the inclusion of
a number of new configuration macros (see Table 1).
For instance, the tests can annotate the physical pa-
rameters, such as the speed rate to be used or the
number of cycles that the clock enable must be set in
order to configure the proposed hardware verification
platform. Moreover, the RC-Unity framework allows
engineers to retrieve information about the latency of
the execution of a test. These physical annotations
are the main difference between the in-hardware do-
main and the other two domains (pure software do-
main and co-simulation domain).

Listing 1 shows an example of a test in the RC-
Unity framework. Firstly, designers configure the
verification overlay through the configuration macros:
they set the clock rate for the DUT, so here one is
able to observe the DUT behavior under overclock-
ing/underclocking conditions, and the number of cy-

cles that the clock enable will be active (lines 4 and
5 of Listing 1). Configuration macros are lazy oper-
ations, in the sense that they take effect after the
RCUNITY START macro is executed (line 6 of List-
ing 1). Once the configuration annotations are ex-
ecuted, the DUT might be set to a well-known state
with the RCUNITY RESET macro (line 7 of Listing 1).
At this moment, verification engineers can exercise
the DUT as a black box by just invoking the top-
function (line 9 of Listing 1). This invocation is in
fact a fake local invocation, because the DUT is run-
ning on one of the three possibilities explained in Fig-
ure 1, hence the invocation bridges both domains.
Finally, designers can assert the time elapsed during
the test matches with the expected one (line 11 of
Listing 1) and they can assert the equality between
the output and the reference values (lines 13 and 14
of Listing 1). The values of both operations are re-
trieved from the on-board verification platform.

Listing 1: Example of a test within RC-Unity

1 void
2 test_module (){
3 #ifdef __SYNTHESIS__
4 RCUNITY_CONF_CLK_RATE (100); // 100 MHz
5 RCUNITY_CONF_CLK_EN (200); // 200 cycles

active -high
6 RCUNITY_START (); // Configure HW platform
7 RCUNITY_RESET (); // Reset Module
8 #endif
9 result = moduleDUT(stimuli)

10 #ifdef __SYNTHESIS__
11 TEST_ASSERT_TIME_LT (750); // Checking time
12 #endif
13 for(int i=0; i!=16; i++)
14 TEST_ASSERT_EQ(reference[i], result[i]);
15 }
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At this point, designers are able to verify their
hardware components using the RC-Unity frame-
work. Therefore, the tests check the complete de-
sign as a black box in any of the target domains:
software, co-simulation or in-hardware. However, it
is usually interesting to also check the behavior in
different internal points of the design, although that
should not imply changes in the top interface nor fi-
nal architecture. The following sections describe how
our solution overcomes this challenge.

3.3. On-board verification using grey-box strategy

HLS engineers typically code their hardware de-
signs into a top-function, which usually contains some
nested ones. The functionality of this kind of hard-
ware design is usually verified as a unique module
(black-box verification), which makes it difficult in
case of failure to identify the source in the code.
Nevertheless, each function that contains the top-
function must be checked individually to delimit pos-
sible bugs. Thus, these functions are seen as black
boxes, whilst the overall architecture at block level is
now known by engineers (grey-box verification).

3.3.1. Using implicit breakpoints

Following the translation process done by HLS
tools, nested functions are mapped into functional
units (FUs) and are linked between them to ob-
tain the desired behavior. In the software domain,
engineers are able to check the behavior of each
nested function individually. In a co-simulation, do-
main grey-box verification strategy implies manu-
ally changing the top-function to choose the correct
nested-function under test and select the appropri-
ate test case(s). This is even worse in the hardware
domain, since engineers do not have an easy way to
check the behavior of each FU that composes a hard-
ware design, nor a way to increase their visibility,
since that requires the use of debug artifacts that
may not appear in the final release of their hardware
modules, which leads to building custom hardware
projects.

To overcome this challenge, we propose a transpar-
ent and automatic grey-box strategy, which is based
on the modification of the control data flow graph
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FU_B
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done_FU_?

data_FU_?

flagStart

flagDone

OUT

adapter

selFU

IN
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FU_A

FU_B

FU_C

T

Figure 2: Original DUT vs Modified DUT

(CDFG) of the original hardware design, transpar-
ently instrumenting the developer’s code in order to
include breakpoints between the FUs that comprise
the hardware design. Thus, the dut testing tool
(executed with the option --grey) reads the top-
function from a C code and instruments it.

This instrumentation consists of duplicating the
output path of each sub-block (or FU) to be tested,
and routing that output to the module interface and
to the next FU in order to not alter the original path
(see Figure 2). Therefore, our proposal exercises the
DUT from the original entry point, but the output
point changes in accordance with the FU under test.
In addition, start and done control flags for each FU
are added to observe the execution of each one, which
means the point being executed at a given time. The
start signal is set one cycle before executing the
FU’s tasks, whereas the done signal is enabled for
one clock cycle after the FU has finished its tasks.
Figure 2 shows an example of our approach applied
in a top-function that contains three nested-functions
(FU A, FU B and FU C); note that each FU depends on
the result of the previous one. Thus, to verify the
intermediate FU B block, some extra code to bridge
the output of FU B block to the output point (right
side of Figure 2) may be included.

To manage the extra signals in the hardware de-
sign, an adapter is generated by the dut testing

tool during the instrumentation phase. This adapter
groups the control signals that will be routed to a
hardware component, whose aim is to manage the
verification process (Test Manager component, see
Section 4). The output values are serialized and sent
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to the original output interface. Figure 2 (right side)
illustrates an overview of the communication between
the modified DUT (T’) and the generated adapter.
The start and done flags are grouped by OR gates,
while the data signals (the output data of each FU)
are selected by a multiplexer in accordance with the
selFU signal, which is controlled by the Test Manager
component. Note that the adapter is more complex,
and the figure just shows an abstraction of its behav-
ior.

Listing 2 shows a new test, which delimits the veri-
fication, checking the FU B block instead of the whole
DUT. In accordance with Figure 2, light blue ar-
rows are analyzed during the execution of the test
shown in Listing 2, while the rest of the arrows are
ignored and not taken into account for this test.
The configuration macros are similar to the previous
test (Listing 2), but it includes the RCUNITY CONF FU

macro. This macro denotes the FU to be veri-
fied, which corresponds to the second FU (line 5
of Listing 2), so the test environment is configured
to select the appropriate FU (selFU is set with the
number two). Then, the hardware design is exer-
cised by the test, using the same stimuli that are
used to check the whole design (line 8 of Listing 2).
After that, the test asserts that the time elapsed
by the second FU matches with the expected one.
Further, we can use RCUNITY CONF START FLAG and
RCUNITY CONF STOP FLAG macros with values 1 and
2 to measure the time consumed by FU A and FU B

blocks respectively, thus retrieving in this way the
latency from the beginning of the stimulation to the
end of the FU B block execution. Finally, the test
compares results related to the FU B block, with some
golden intermediate values (line 10 of Listing 2).

Listing 2: Example of a test for FU B (using RC-Unity)

1 void
2 test_FU_B (){
3 RCUNITY_CONF_CLK_RATE (100); // 100 MHz
4 RCUNITY_CONF_CLK_EN (200); // 200 cycles

active -high
5 RCUNITY_CONF_FU (2); // Set 2nd FU under test
6 RCUNITY_START (); // Configure HW platform
7 RCUNITY_RESET (); // Reset Module
8 result_FU_B = moduleDUT(stimuli)
9 TEST_ASSERT_TIME_LT (50); // Checking time

10 TEST_ASSERT_EQ(reference_FU_B , result_FU_B);
11 }

In summary, to perform this new hardware veri-
fication strategy we consider the same stimuli that
we use in a complete testing, but by using interme-
diate results that can be obtained from the non-top-
function software tests. For instance, the example
shown in Figure 2 can be checked as a whole de-
sign, exercising it from the input of FU A function
and checking the output of FU C function, but it also
can be checked in two intermediate points: at the end
of FU A and at the end of FU B. Thus, the design is
checked using three different tests that retrieve infor-
mation from three different internal points. In addi-
tion, the RCUNITY CONF XX FLAG macros allow mea-
surement of the time elapsed by an individual FU or
a chain of them.

Unfortunately, our proposal contains an important
restriction. It is limited to those HLS hardware ac-
celerators whose chain of FUs is a Directed Acyclic
Graph (DAG). A DAG contains some vertices di-
rected by edges, but there is not any path to start
from a particular vertex and return to that vertex.
However, DAGs are popular models in practice, with
applications in machine learning and casual inference,
which are being taken as a reference for hardware ac-
celeration [20].

3.3.2. Using explicit breakpoints

A number of hardware designs are hard to be
divided into nested functions using HLS, so de-
signers build a single function that implements a
large percentage of the behavior of the overall de-
sign. This function plays the role of the top-
function required by the HLS tools. In order to
provide a solution similar to the previous scenario,
we propose the use of explicit breakpoints instead
of the implicit ones associated with the FUs of a
hardware design. Now, breakpoint sentences can
be added in the middle of the top-function, us-
ing a simple signature: rcunity breakpoint(selID,

ID), where selID is set from the test case using the
RCUNITY CONF BREAKPOINT(ID) macro. When the
selID and the ID values match, the execution is
halted if the Test Manager is configured to freeze
the execution (the RCUNITY CONF FREEZE macro con-
figures the freeze feature). Thus, a single explicit
breakpoint can be activated for each test execution
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Figure 3: Overview of the PS and the PL part of verification overlays

(by default if there is no selected one). Explicit break-
points include a heavy penalty, because the CDFG is
severely modified when data is routed from the break-
point location to the output channel, so this task is
left to designers.

However, this solution allows measurement of the
time elapsed between breakpoints. At the beginning
of the developer’s code a start signal is set for a
clock cycle in order to denote the beginning of the
DUT’s execution. Then, each explicit breakpoint sets
a done signal to flag the finishing of a block (a group
of operations) and another start signal to denote the
beginning of the next group of operations, regardless
of the selected breakpoint. Thus, the Test Manager
component is able to measure the time elapsed after
executing a group of operations.

Explicit breakpoints also provide another benefit
to those designs that work with a third-party compo-
nent, such as a DRAM. Designers may be able to stop
the DUT with explicit breakpoints and retrieve infor-
mation from that third-party component by inferring
the correctness of a hardware design at a particular
point, as the second case study shows (see Section
5.2).

4. Verification Platform with Overlays

Xilinx defines an overlay as a pre-compiled FPGA
design that can be downloaded to the Programmable
Logic (PL) part of a hybrid FPGA, along with some
software that controls the cores deployed in the PL
to accelerate a software application. Thus, an over-
lay can be loaded to an FPGA like a software li-
brary. The overlay approach was initially introduced
by Xilinx in their PYNQ boards, such as PYNQ-Z1.
PYNQ provides a Python layer to facilitate the use
of FPGA-based solutions that require hardware en-
gineering knowledge and expertise [21]. This concept
can also be adopted to other Zynq architectures and
HLLs, such as the ZedBoard platform and the C pro-
gramming language, as shown in the experimental
evidence of this work.

Following the Xilinx approach, we provide a col-
lection of verification overlays (see subsection 4.1) to
allow FPGA-based designs to be verified from the
RC-Unity framework running in the Processing Sys-
tem (PS), avoiding the manual building of a custom
hardware verification platform. Verification overlays
share the same architecture but differ in the com-
munication channels between the DUT and the rest
of the system, as shown in Figure 3. Furthermore,
a communication layer based on ZeroC Ice middle-
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Table 2: Available overlays in RC-Unity testing framework

Name
AXI-S AXI-4 FIFO

Init Target Slave Master Rd Wr

SAXI 0 0 1 0 0 0
Stream 1 1 0 0 0 0
FIFO 0 0 0 0 1 1

SAXI MAXI 0 0 1 1 0 0
SAXI Stream 1 1 1 0 0 0

SAXI DRAM HP 0 0 1 1 0 0

ware [22] has been included alongside special services
in the PS part in order to turn our solution into a
remote verification platform

4.1. Overlay layout

Figure 3 (right side) illustrates the block design
of the architecture layout of our verification over-
lays. This block design view abstracts the inter-
face of the DUT in order to show the common PL
part, which shares the overlays that include our RC-
Unity framework. This PL part is composed of a dy-
namic area where hardware accelerators are instan-
tiated through the zipFactory component, whilst the
Test Manager component configures the verification
platform and manages the verification process using
high-level functions.

4.1.1. Hardware accelerator interfacing

Unfortunately, the communication channels are
too wide and varied, from a custom interface to a
standard one, making it difficult to obtain a single
solution for all interfaces. Due to the range of core
interfaces, this work is focused on those interfaces
that match with a standard bus, such as AXI-Stream
or AXI-HP. Thus, the RC-Unity framework includes
a number of available overlays (see Table 2) to allow
designers to verify their hardware designs.

Table 2 shows the overlays that contain the RC-
Unity framework, denoting the number of each
kind of standard bus included. For instance, the
SAXI Stream overlay can be used in those hardware
accelerators that contain an interface composed of
an AXI-Stream input and an AXI-Stream output
and an AXI-4 slave. Most hardware accelerators use
this interface, where the AXI-4 slave interface con-
figures the core itself, whilst both streaming chan-
nels are used to read and write the data that will be

transformed. The streaming channels, or those over-
lays that contain it (SAXI Stream, Stream and FIFO
overlay), involve a previous task before injecting the
data to the DUT: loading the data into temporary
buffers. Thus, both SAXI Stream and Stream over-
lays translate the data sent through the AXI bus to
the AXI-Stream standard protocol as Figure 3 (top-
right side) shows, while FIFO overlay does not fol-
low a standard to forward the data to the DUT. In
addition, Figure 3 (bottom-left side) illustrates the
SAXI DRAM HP overlay, which contains two AXI
channels: one for the control commands and the other
to connect the DUT and the DRAM via AXI-HP.

The signal names of the DUT interface assigned by
designers could mismatch with the signal names given
by the overlay, it may be that even the reset signal
must be negated according to the DUT reset’s polar-
ity. Therefore, a signal adaptation task is performed
automatically, comparing the interface signals gener-
ated by the HLS tool to the DUT’s overlay signals.
The result of this task is a wrapper that is included
as a source code to generate the configuration file
properly (see Figure 3).

4.1.2. Loading hardware accelerators

Hardware accelerators or DUTs are loaded into the
reconfigurable partition (RP) of the corresponding
overlay, playing the role of a reconfigurable mod-
ule (RM). Therefore, the PL layout of overlays is
divided into two parts: a static one which contains
those components that remain unchanged regardless
of the DUT and the DUT itself. This feature is known
as Dynamic Partial Reconfiguration (DPR) [23] and
brings a major benefit to our solution: the saving of
synthesis time. Since overlays are provided as refer-
ence projects with a number of checkpoints, the con-
figuration file is generated from these pre-synthesized
points, using several TCL scripts. Thus, the scripts
open the synthesized checkpoint of the correspond-
ing reference overlay and include the RTL logic of
the DUT.

First, and before run tests, the configuration file re-
lated to a DUT must be loaded into the available RP
of an overlay, so overlays require a reconfiguration
engine to perform the DUT loading process. This
task is done by a custom component called zipFactory
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(see Figure 3). The loading process is carried out in
two parallel steps: 1) data from the configuration file
must be stored in a memory address of the DRAM; 2)
the zipFactory component retrieves the data with an
internal DMA, which is immediately forwarded in 32-
bit words that match with the data bus width of the
ICAP (32-bits). In addition, the component knows
the type of the 32-bit word sent to the ICAP at each
transaction; this fact allows the zipFactory to recog-
nize the desynchronization command and finalize the
reconfiguration process by attaching some NOPs to
flush the command pipeline properly.

4.1.3. Management of the hardware verification pro-
cess

The overlay’s PL layout includes another compo-
nent called the Test Manager (see Figure 3), whose
aim is to perform a variety of hardware tasks that are
not feasible from software or may result in poor ac-
curacy when executed from software programs. Each
hardware task is managed from the software test-
bench, using the macros listed in Table 1.

• It resets the RP’s components in order to assure
that the DUT starts from a well-known state.

• It manages the clock enable signal during the
cycles indicated in the macro related to this
task. The clock enable signal is active-low un-
til RCUNITY START is invoked. To active-high this
signal all the time, a value of 0 must be set.

• It sets the clock rate of the RM and those mod-
ules that interact with it. The available clock
speed rates are: 33 MHz, 66 MHz, 100 MHz,
200 MHz and 400 MHz.

• It measures the time elapsed at each FU or be-
tween consecutive FUs. The Test Manager looks
at the start and done signals of those FU(s)
that are under test and determines the number
of cycles to complete an operation between two
internal DUT points.

• It configures the DUT’s data path in order to
route the return values of an FU to the output
point, and enables the explicit breakpoints to
halt the execution of the hardware component.

4.2. Verification Services Layer

RC-Unit overlays provide a remote verification ser-
vice running on the PS part, as shown in Figure 3
(left side). This service adds a new layer to allow
overlays in the PL to be controlled remotely. Thus, a
Linaro OS, which is a GNU/Linux distribution based
on Ubuntu and tailored to embedded systems, is run-
ning on the ARM processor with our verification ser-
vice layer, which has been incorporated into the OS
as a Linux daemon.

The remote verification service is divided into three
servants, based on ZeroC Ice [22]. ZeroC Ice is
an object-oriented Remote Procedure Call (RPC)
framework that provides a number of facilities for
building network-based distributed applications with
an abstraction layer that hides network communica-
tion issues in order to allow designers to focus on
application logic. Thus, our overlays are compati-
ble with the programming languages supported by
ZeroC Ice, or in other words, another software test-
ing framework, such as unittest from Python, which
could be extended to verify hardware designs, thanks
to the fact that our solution takes advantage of the
properties of ZeroC Ice to build a hardware-software
communication solution that is easy to use due to the
high-level abstraction of the API [24]. Since our cus-
tomized distributed solution preserves the location
and access independence properties, the whole pro-
cess can be performed either locally or remotely (i.e.,
via Ethernet).

Transfer : stores a file in the DRAM memory space.

DPR : runs the reconfiguration process, using the
configuration file stored in the DRAM memory
space, hence, before executing it, a properly con-
figurated file must be available in the DRAM.
This servant increases the availability and acces-
sibility of the verification overlays, avoiding, for
example, the need to configure the PL using a
complete overlay (usual use case).

Testing : provides the necessary functionality to ex-
ercise the DUT and to configure the Test Man-
ager component, both located in the PL part.
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Testing

Servant

RCUNITY_START()

binding on: 

   'Testing -t -e 1.1:tcp 

        -h zynq-kilby.uclm.es

        -p 7891'

configure

header

clk

rate

clk

enable

FU(s)

Under Test

32 bits32 bits32 bits32 bits

RCUNITY_RESET()

reset

header

32 bits

result=moduleDUT(stimuli)

stimuli

header
stimuli

32 bitsN bits

Figure 4: Communication between Tests and FPGA
(Testing servant)

The services offered by the Verification Services
Layer (VSL) are based on a set of routines that trans-
late high-level invocations into ZeroC Ice messages,
which in turn are embodied into TCP/IP packets.
Thus, serializing and deserializing data for network
transmission is performed transparently by Ice; tests
run remotely on the developer’s workstation, whilst
the DUT runs on an FPGA platform connected to
the network. The macros of the RC-Unity testing
framework are implemented over the VSL, as well as
the top-function when on-board verification is per-
formed. Figure 4 shows a communication example:
the arguments of macros and functions are serialized
as a data stream and sent using the VSL; when the
FPGA receives the streaming of data, the Testing
servant deserializes the data and exercises the DUT
or the Test Manager via mmap.

5. Case Studies

In this section, two case studies are presented. The
first is based on the design of an IP implementing the
Histogram of Oriented Gradients (HOG) feature de-
scriptor algorithm and the second is based on the de-
velopment of an accelerator for the Dijkstra shortest
path algorithm for graphs. Each case study aims to
highlight how the limitations of the current tools and
verification flows can be overcome by the adoption
of our solution. The HOG use case shows how RC-
Unity can be used to get accurate latency measures
for the different sub-modules that conform the archi-
tecture of the IP. This can be done by the using of

Overlay 
input FIFO

Overlay 
output FIFO

Figure 5: l2-norm signature and block diagram overview
after using RC-Unity

implicit breakpoints and the automation of the gen-
eration of the necessary infrastructure, which avoids
the need for the high-level model of the HOG com-
ponent. The second use case, Dijkstra, demonstrates
how RC-Unity can be used to measure the elapsed
time between two points in the component function-
ality, providing a finer grained view of the internals
of the implementation. This use case also exempli-
fies the use of explicit breakpoints and the impact on
resources overheads and clock frequency variation.

For the implementation of the testing environment,
version 2017.4 of Xilinx’s development toolchain (Vi-
vado HLS & Vivado) has been used in these exper-
iments, running on top of a GNU/Linux operating
system. The target platform in both cases is a Xilinx
ZedBoard working at 100 MHz. However, the clock
speed of the RP and the components related to the
DUT can be modified at runtime.

5.1. Case Study A: Histogram of Oriented Gradients

The HOG is a feature descriptor used in computer
vision and image processing for object detection; it
is particularly suited for human detection in images.
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Table 3: Estimated (C), simulated (RTL) and actual
(RC-Unity) timing comparison of l2-norm

FU Vivado HLS Co-Simulation Overlay

sum hist pow 146 cycles 146 cycles 145 cycles
scale 26 cycles 26 cycles 24 cycles

mult hist scale 81 cycles 83 cycles 80 cycles

The algorithm implementation is divided into differ-
ent steps (i.e., gamma and color normalization, gradi-
ent computation or block normalization). In our case
study, the step chosen is the vector normalization
block with l2-norm normalization factor [25]. The
size of the window is 4x4 pixels.

Figure 5 shows the HLS top-function of the l2-
norm algorithm in C language. The pragma direc-
tives drive the HLS synthesis process in such a way
that the input and output arrays are mapped to FIFO
modules in order to match the required overlay inter-
face. In addition, Figure 5 depicts the block diagram
of the generated IP, after applying RC-Unity’s im-
plicit breakpoint approach (see subsubsection 3.3.1).
Each FU corresponds to a processing stage in the
original dataflow, plus the adapter. The synchroniza-
tion signals between the stages (start/end) are split
and driven to the input of the adapter, which repre-
sents the minimum level of interference in the origi-
nal design. The adapter uses these signals to register
the latency of each submodule in its internal regis-
ters, which are accessed through the interface with
the overlay (not represented in Figure 5).

Table 3 shows a comparison of the latency measure-
ments (in cycles) for each of the stages of the l2-norm
algorithm. A variation between the estimation made
by the HLS tool can be observed, the result of the
co-simulation of the synthesized RTL model and the
on-board values provided by RC-Unity. Our overlay
is the most accurate because it does not use an es-
timation to infer the time that takes an operation.
RC-Unity works with synthesized designs instead of
simulation models.

5.2. Case Study B: Dijkstra’s algorithm

Dijkstra’s algorithm is a search algorithm that
finds the shortest path between two nodes of a graph.
This algorithm is used in different domains, such

as robotics or geographical maps, to find the opti-
mal route or networking routing protocols, such as
linkstate routing.

The reference implementation of the Dijkstra’s al-
gorithms makes use of a variety of data structures
whose implementation directly influences the perfor-
mance of the hardware component generated by the
HLS tool. For example, a priority queue is used to
maintain the collection of nodes to be visited. A pri-
ority queue can be instantiated either by using an
ordered set or as a binary heap. Although both ap-
proaches are valid, they have an impact that it would
be helpful to measure.

Our proposal allows the reuse of the verification en-
vironment, so that only the DUT needs to be resyn-
thesized, thus saving time and effort. This is possible
when the interface of the component remains invari-
ant. In the case at hand, the component must access
an external memory (DRAM), since the memory re-
quirements for the graph and auxiliary variables ex-
ceed by far the in-chip capacity of the FPGA. In the
HLS model, this is represented by the mapping of the
memory pointers to an AXI bus.

Listing 3: Example of use of explicit breakpoints in Dijkstra
HLS model

1 HLSTL_MW_T dijkstra (...,
2 RC_UNITY_AXIS_OVERLAY_IFACE ()) {
3 ...
4 while (vit_first != vit_last) {
5 Hls_Vx_It_get(mem_graph ,vit_first ,&e);
6 Hls_Array_get(mem_visited ,&visited ,
7 e._tgt_vx ,&done);
8 // Example breakpoint #1
9 rcunity_breakpoint (1);

10 if (done == HLSTL_FALSE) {
11 ...
12 }
13 // Explicit breakpoint #2
14 rcunity_breakpoint (2);
15 Hls_Vx_It_inc (&vx ,& vit_first);
16 }
17 ...
18 }

Therefore, the use of a SAXI DRAM HP overlay
and explicit breakpoints (see subsubsection 3.3.2) are
recommended in this case study. The code in Listing
3 exemplifies the use of this feature by the designer.
First, the adaptation of the top-level function inter-
face is done by means of an RC-UNITY macro (line
2 of Listing 3), which adds the necessary signals, de-
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Table 4: SW and RC-Unity timing analysis of Dijkstra’s
algorithm

Timer source 1st Breakpoint 2nd Breakpoint Total

PMU N/A N/A 67489 ns
Overlay 37 ns 560 ns 63670 ns

pending on the type of overlay used. Then, the de-
signer inserts as many breakpoints as necessary using
the library function rcunity breakpoint) (lines 9 and
14 of Listing 3). The argument to this function is a
number that unequivocally identifies the breakpoint
and is used later to access the right timer counter
from the software.

The use of explicit breakpoints is of special impor-
tance, given the nature of the algorithm. The latency
of a path-finding operation is not known beforehand,
since it depends on a series of attributes (i.e., graph
size, average degree of the vertices, etc.). Also, the
RTL simulation of the model is not feasible in this
case, due to the limitations of the co-simulation en-
vironment; there is a maximum size of the test input
vector that exceeds the size of the graphs by far (in
order of millions of nodes and vertices).

In this context, only when the IP is deployed in
the FPGA is it possible to get some timing feed-
back through the use of either software or hardware
timers, if they are present in the platform. However,
these observations are not error-free because of timer
resolution and software overheads. The last column
in Table 4 shows a comparison of the measured la-
tency for one execution of the Dijkstra’s algorithm
obtained from: (a) the internal timer of the ARM
processor (PMU); and (2) RC-Unity, using explicit
breakpoints. As the reader can see, there is a signif-
icant variation between the time measured with the
PMU and our approach (3819 cycles), which repre-
sents an error of 5.9%.

Not only does RC-Unity accurately measure the
time elapsed between the start and the end of the
component operation, but it also provides a means
with which to perform (fine-grain) hardware profil-
ing, which is impossible using only software timers.
In this use case, two explicit breakpoints were placed:
the first one was located after the initialization phase

of the local variables and the second one once the ini-
tial node was visited. The second and third columns
in Table 4 show the intermediate completion times
obtained using explicit breakpoints.

The proposed framework is highly flexible and the
level of granularity, as well as the minimum interval
to be measured, are only restricted by the minimum
set of operations between explicit breaks. Without
RC-Unity, platform timers are the instrument to per-
form such types of profiling. Nevertheless, this mech-
anism is only applicable at the DUT level, which pre-
vents getting segmented statistics of the operation of
the component. Also, platform timers introduce un-
certainty, since their operation is affected by external
factors such as operating system overload, interrup-
tion handling overheads, etc.

5.3. Resource Overhead and Critical Path Penalty

RC-Unity instruments the original HLS model so
that the developer can introspect and monitor the
hardware component. In order to analyze the im-
pact of the extra logic introduced by this proposal,
the increase in resources and the maximum working
frequency have been measured.

In the first use case, HOG algorithm and implicit
breakpoints, the use of resources has been broken
down by resource type and the comparison of re-
sults is made before and after the Place and Route
stage; that is, the estimated values provided by Vi-
vado HLS tools and the actual figures on board. In
Table 5 it can be observed that, concerning the la-
tency overhead, our approach introduces one cycle
per FU present (three clock cycles in total) in the
design due to the way the start and done signals are
managed. On the contrary, RC-Unity does not sig-
nificantly affect the clock frequency, preserving the
initial timing restrictions. In this experiment, the
verification platform includes the minimum elements
to support the basic functionality of the proposed
verification platform, namely: FIFO overlay. Our
solution reduces roughly 100% of the BRAMs and
96% of the LUTs used, by employing the approach
proposed by Y. K. Choi et al. in [17]. Unfortunately,
the FFs resources are not provided in [17].

As to the second use case, the Dijkstra’s algorithm
and explicit breakpoints, Table 6 shows the extra de-
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Table 5: Estimated and actual overheads for the (l2-norm
algorithm) introduced by RC-Unity’s implicit breakpoints

Vivado HLS P&R
(estimated) (on-board)

Initial RC-Unity Initial RC-Unity

BRAM 0 4 0 1
DSP 13 13 13 13
FF 1316 2116 1107 1778
LUT 1928 2415 1095 1607

Latency1 255 258 249 252

Max. Freq.2 123 114 121 109

1In clock cycles. 2In MHz.

Table 6: Extra demand of resources by explicit breakpoints

Number of
breakpoints LUTs FFs LUTs (%) FFs (%)

1 9 100 0,02% 0,09%
2 17 136 0,03% 0,13%
3 21 137 0,04% 0,13%
4 28 138 0,05% 0,13%
5 72 141 0,14% 0,13%
6 133 102 0,25% 0,10%
7 170 143 0,32% 0,13%
8 174 145 0,33% 0,14%
9 188 155 0,35% 0,15%
10 191 252 0,36% 0,24%

mand of resources for an increasing number of break-
points; up to ten checkpoints were embodied in the
HLS model. The figures correspond to the actual
usage of LUTs and FFs, after the Place and Route
of the design for a Xilinx ZC702 prototyping board.
In absolute (first and second columns) and relative
(third and fourth columns) terms, a steady lineal
growth with a variable gradient can be observed, due
to the effect of the optimizations performed by the
synthesis tool.

The analysis of the clock period after synthesis for
the Dijkstra IP concludes a variation of ±0.45 ns
compared with the original design (T = 9, 01ns) with
no breakpoints.

6. Conclusion

This paper has introduced a hardware testing
framework, RC-Unity, for in-hardware verification of

the components developed using HLS. This frame-
work embraces both functional and timing planes
and is well-suited for software or hardware develop-
ers. The proposed verification platform is customized
through the use of a variety of configuration/control
macros that tweak physical parameters such as the
operating clock frequency.

Focusing on the utilities provided by RC-Unity,
verification engineers can find some macros to accu-
rately measure time, at a variable level of granularity,
and other macros to enable a level of introspection
not available with commercial tools. Thus, the out-
put of the different FUs, or sub-functions that the
HLS is made of, can be accessed for further checking
of the correctness of the component. This is based on
the use of explicit or implicit hardware breakpoints.
They may be useful for checking the time elapsed be-
tween operations, or to halt a hardware component
in order to retrieve the DUT’s state in a specific time.

In addition, our proposal provides a remote and
transparent dynamic verification service through a
collection of overlays. Engineers can exercise a DUT
remotely, breaking down the test from the hardware
prototype and using portable stimuli across the tar-
get domain. The verification overlays use DPR fea-
tures, thus enabling reuse in future improvements of
DUTs and increased engineers’ productivity. Engi-
neers need only to configure the verification environ-
ment in accordance with the DUT’s requirements.

Future work will be targeted to extract intermedi-
ate results from software simulations and automat-
ically integrate them into the verification process
as reference vectors, and then compare the solution
with other verification techniques and FPGA fami-
lies, such as the Kintex family from Xilinx, which
does not contain an embedded processor, and the Ar-
ria family from Intel. In addition, we will raise the
visibility of internal signals, using synthesizable hard-
ware assertions. The purpose of these assertions is to
monitor critical aspects of the system and trigger an
event when the behavior is wrong. Another working
line is oriented to the building of synthetic compo-
nents in order to reduce third-party dependencies for
verification purposes.
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