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Abstract: Remote-sensing platforms, such as Unmanned Aerial Vehicles, are characterized by limited
power budget and low-bandwidth downlinks. Therefore, handling hyperspectral data in this context
can jeopardize the operational time of the system. FPGAs have been traditionally regarded as the most
power-efficient computing platforms. However, there is little experimental evidence to support this claim,
which is especially critical since the actual behavior of the solutions based on reconfigurable technology
is highly dependent on the type of application. In this work, a highly optimized implementation of
an FPGA accelerator of the novel HyperLCA algorithm has been developed and thoughtfully analyzed
in terms of performance and power efficiency. In this regard, a modification of the aforementioned
lossy compression solution has also been proposed to be efficiently executed into FPGA devices using
fixed-point arithmetic. Single and multi-core versions of the reconfigurable computing platforms are
compared with three GPU-based implementations of the algorithm on as many NVIDIA computing
boards: Jetson Nano, Jetson TX2 and Jetson Xavier NX. Results show that the single-core version of our
FPGA-based solution fulfils the real-time requirements of a real-life hyperspectral application using a
mid-range Xilinx Zynq-7000 SoC chip (XC7Z020-CLG484). Performance levels of the custom hardware
accelerator are above the figures obtained by the Jetson Nano and TX2 boards, and power efficiency is
higher for smaller sizes of the image block to be processed. To close the performance gap between our
proposal and the Jetson Xavier NX, a multi-core version is proposed. The results demonstrate that a
solution based on the use of various instances of the FPGA hardware compressor core achieves similar
levels of performance than the state-of-the-art GPU, with better efficiency in terms of processed frames
by watt.

Keywords: hyperspectral imaging; lossy compression; on-board processing; FPGA; GPU; real-time
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1. Introduction

Hyperspectral technology has experienced a steady surge in popularity in recent decades. Among
the main reasons that have given hyperspectral imaging greater visibility is the richness of spectral
information collected by this kind of sensor. This feature has positioned hyperspectral analysis techniques
as the mainstream solution for the analysis of land areas and the identification and discrimination of
visually similar surface materials. As a consequence, this technology has acquired increasing relevance,
being widely used for a variety of applications, such as precision agriculture, environmental monitoring,
geology, urban surveillance and homeland security, among others. Nevertheless, hyperspectral image
processing is accompanied by the management of large amounts of data, which affects, on one hand,
its real-time performance and, on the other hand, the requirements of the on-board storage resources.
Additionally, the latest technological advances are promoting to market hyperspectral cameras with higher
spectral and spatial resolutions. All of this makes the efficient data handling, from an on-board processing,
communication, and storage point of view, even more challenging [1,2].

Traditionally, images sensed by spaceborne Earth-observation missions are not on-board processed.
The main rationale behind this is the limited on-board power capacity that forces the use of low-power
devices, which are normally not as highly performing as their commercial counterparts [3–8]. In this
regard, images are subsequently downloaded to the Earth surface where they are off-line processed on
high-performance computing systems based on Central Processing Units (CPUs), Graphics Processing
Units (GPUs), Field-Programmable Gate Arrays (FPGAs), or heterogeneous architectures. In the case
of airborne capturing platforms, images are normally on-board stored and hence the end user could
not access them until the flight mission is over [9]. Additionally, unmanned aerial vehicles (UAVs)
have gained momentum in recent years. They have become a very popular solution for inspection,
surveillance and monitoring since they represent a lower-cost approach with a more flexible revisit time
than the aforementioned Earth-observation platforms. In this context, hyperspectral image management
is addressed similarly to how it is done in airborne platforms, although a lot of efforts have been made
recently to transmit the images to the ground segment as soon as they are captured [10,11].

Regrettably, the data transmission from the aforementioned remote-sensing observation platforms
introduces important delays. They are mainly related to the transference of large volumes of data
and the limited communication bandwidths between the source and the final target, which has also
kept relatively stable over the years [6,12,13]. Consequently, it reveals a bottleneck in the downlink
systems that can seriously affect to the effective performance of real-time or nearly real-time applications.
However, the steadily growing data-rate of the latest-generation sensors makes it compulsory to reach
higher compression ratios and to carry out a real-time compression performance in order to prevent the
unnecessary accumulation of high amounts of uncompressed data on-board and to facilitate efficient data
transfers [14].

In this scenario of limited communication bandwidths and increasing data volumes, it is becoming
necessary to move from lossless or near-lossless compression approaches to lossy compression techniques.
Despite most of the state-of-the-art lossless compressors bringing a quite satisfactory rate-distortion
performance, the former approaches provide very moderate compression ratios of about 2∼3:1 [15,16],
which presently are not sufficient to handle the high input data-rate of the newest-generation
sensors. For this reason, a research effort targeting lossy compression is currently being made [17–21].
Due to the limited on-board computational capabilities of remote-sensing hyperspectral acquisition
systems, low-complexity compression schemes stand as the most practical solution for such restricted
environments [21–24]. Nevertheless, most of the state-of-the-art lossy compressors are generalizations of
existing 2D images or video compression algorithms [25]. For this reason, they are normally characterized
by high computational burden, intensive memory requirements and a non-scalable nature. These features
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prevent their use in power-constrained applications with limited hardware resources, such as on-board
compression [26,27].

In this context, the Lossy Compression Algorithm for Hyperspectral Image Systems (HyperLCA) [28]
was developed as a novel hardware-friendly lossy compressor for hyperspectral images. HyperLCA
was introduced as a low-complexity alternative that provides a good compression performance at
high compression ratios with a reasonable computational burden. Additionally, this algorithm permits
compressing blocks of image pixels independently which promotes, on the one hand, the reduction
of the data to be managed at once besides the hardware resources to be allocated. On the other
hand, the HyperLCA algorithm becomes a very competitive solution for most applications based on
pushbroom/whiskbroom scanners, paving the way for real-time compression performance. The flexibility
and the high level of parallelism intrinsic to the HyperLCA algorithm has been previously evaluated in
earlier publications. In particular, its suitability for real-time performance in applications characterized
by high data-rates with restrictions in computational resources due to power, weight or space was tested
in [29].

In this work, we focus on a use case where a visible-near-infrared (VNIR) hyperspectral pushbroom
scanner is mounted onto a UAV. In particular, we have analyzed the performance of FPGAs for the lossy
compression of hyperspectral images against low-power GPUs (LPGPUs) in order to establish the benefits
and barriers of using each one of these hardware devices for the on-board compression task. Specifically,
we have implemented the HyperLCA algorithm in a Xilinx Zynq-7000 programmable System on Chip
(SoC). We have selected this SoC because it can be found in low-cost, low-weight and compact-size
development boards, such as MicroZedTM and PYNQ boards. Although UAVs have been consolidated as
trending aerial observation platforms, their acquisition costs are still not accessible for many end customers,
not only those who want to purchase them but also those who lease their services. For this reason, we
must also aim to solve the economic implications that comes along with these devices. On this basis, in this
work we have focused on the on-board computing platform, searching for a less expensive alternative
that, in exchange, cannot offer the same level of both performance and functionality than other costly
commercial products. Additionally, it is important to note that while experiments carried out in this work
are oriented to the current necessities imposed by an application based on drones, all drawn conclusions
can be extrapolated to other fields in which remotely sensed hyperspectral images have to be compressed
in real time, such as spaceborne missions that employs next-generation space-grade FPGAs.

The rest of this paper is organized as follows. Section 2 gives outlines of the majority issues around
the operations involved in the HyperLCA algorithm. In addition, it also includes a detailed explanation
about the implementation model developed for the execution of the HyperLCA compressor on the selected
FPGA SoC. Section 3 analyzes the obtained experimental results in terms of both quality of the compression
process and hardware implementation points of view. Section 4 discusses the strengths and limitations of
the proposed solution and includes a comparison evaluation of the obtained results with those achieved
by a selection of LPGPUs embedded systems, following the implementation model shown in [29]. Finally,
Section 5 draws the main conclusions of this work.

2. Materials and Methods

2.1. HyperLCA Algorithm

The HyperLCA algorithm is a novel lossy compressor for hyperspectral images especially designed
for applications based on pushbroom/whiskbroom sensors. Concretely, this transform-based solution
can independently compress blocks of image pixels regardless of any spatial alignment between pixels.
Consequently, it facilitates the parallelization of the entire compression process and makes it relatively
simple to stream the compression of hyperspectral frames collected by a pushbroom or whiskbroom
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sensor. Additionally, the HyperLCA compressor also allows fixing a desired minimal compression ratio
and guaranties that at least this minimum will be achieved for each block of image pixels. This makes
it possible to know in advance the maximum data rate that will be attained after the acquisition and
compression processes in order to efficiently manage the data transfers and/or storage. Additionally,
the HyperLCA compressor provides quite satisfactory rate-distortion results for higher compression
ratios than those achievable by lossless compression approaches. Furthermore, the HyperLCA algorithm
preserves the most characteristic spectral features of image pixels that are potentially more useful for
ulterior hyperspectral analysis techniques, such as target detection, spectral unmixing, change detection,
anomaly detection, among others [30–34].

Figure 1 shows a graphic representation of the main computing stages involved by the HyperLCA
compressor. First, the Initialization stage configures the same parameters (pmax) employing the input
parameters CR, Nbits and BS. Since the HyperLCA compressor follows an unmixing-like strategy, the pmax

most representative pixels within a block of image pixels to be independently processed are compressed
with the highest precision. Then, other image pixels are reconstructed using their scalar projections,
V, over the previously selected pixels. Therefore, pmax is estimated according to the minimum desired
compression ratio to be reached, CR, the number of hyperspectral pixels within each image block, BS and
the number of bits used for representing the values of V vectors. Second, these pmax characteristic pixels
are selected using orthogonal projection techniques in the HyperLCA Transform stage. It results in a spectral
uncorrelated version of the original hyperspectral data. Thirdly, the outputs of the HyperLCA Transform
stage are adapted in the following HyperLCA Preprocessing stage for being later more efficiently codified
in the fourth and last HyperLCA Entropy Coding stage. In the following lines, the operations involved in
these four algorithm stages are further analyzed in order to give a glance of the decisions taken for the
acceleration of the HyperLCA algorithm in hardware devices based on FPGAs.

Preprocessing

Initialization

CR, Nbits, BS

û

HyperLCA Transform

Scaling V Vectors

Error mapping

Entropy Coding

pmax

VE

Scaled V

Mapped    , E, V  û

Figure 1. Data flow among the different computing stages of the HyperLCA compressor.

2.1.1. General Notation

Before starting the algorithm description, it is necessary to introduce the general notation followed
thorough the rest of this manuscript. In this sense, HI = {Fi, i = 1, ..., nr} is a sequence of nr scanned
cross-track lines of pixels acquired by a pushbroom sensor, Fi, comprised by nc pixels with nb spectral
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bands. Pixels within HI are grouped in blocks of BS pixels, Mk =
{

rj, j = 1, ..., BS
}

, being normally BS
equal to nc, or multiple of it, and k spans from 1 to nr·nc

BS . µ̂ represents the average pixel of each image
block, Mk. Therefore, C is defined as the centralized version of Mk after being subtracted µ̂ from all
image pixels. E = {en, n = 1, ..., pmax} saves the pmax most different hyperspectral pixels extracted from
each Mk block. V = {vn, n = 1, ..., pmax} comprises pmax vectors of BS elements where each vn vector
corresponds to the projection of the BS pixels within Mk onto the corresponding n extracted pixel, en.
Q = {qn, n = 1, ..., pmax} and U = {un, n = 1, ..., pmax} save pmax pixels of nb bands that are orthogonal
among them.

2.1.2. HyperLCA Initialization

The HyperLCA compressor must first determine the number of pixels, en, and projection vectors,
vn, (pmax) to be extracted from each image block, Mk, according to the input parameters CR, Nbits
and BS, as shown in Equation (1). In it, DR refers to the number of bits per pixel per band used for
representing the hyperspectral image elements to be compressed. As can be deduced, the number of
selected pixels, pmax, directly determines the maximum compression ratio to be reached with the selected
algorithm configuration. Furthermore, bigger pmax results in better reconstructed images but lower
compression ratios.

pmax ≤
DR · nb · (BS− CR)

CR · (DR · nb + Nbits · BS)
(1)

2.1.3. HyperLCA Transform

The HyperLCA compressor is a transform-based algorithm that employs a modified version of the
well-known Gram-Schmidt orthogonalization method to obtain a compressed and uncorrelated image.
In this regard, the HyperLCA Transform stage oversees carrying out the spectral transform. For this reason,
it is the algorithm stage that involves the most demanding computing operations and thus, which are
more prone to be accelerated in parallel dedicated hardware devices.

The HyperLCA Transform is described in detail in Algorithm 1. As can be seen, the HyperLCA
Transform stage receives as inputs the hyperspectral image block to be compressed, Mk, and the number
of hyperspectral pixels to be extracted, pmax. As outputs, the HyperLCA Transform states the set of the
pmax most different hyperspectral pixels, E, and their corresponding projection vectors, V. For doing
so, the hyperspectral image block, Mk, is first centralized by subtracting the average pixel, µ̂, from all
pixels within Mk, which results in the centralized version of the data, C, in line 3. Second, the pmax most
characteristic pixels are sequentially extracted from lines 4 to 15. In this iterative process, the brightness
of each image pixel is calculated in lines 5 to 7. It is defined as the dot product of each image pixel with
itself (see line 6). The extracted pixels, en, are those pixels within the original image block, Mk, with the
highest brightness in each iteration, n (see line 8 and 9). Afterwards, the orthogonal vectors qn and un are
accordingly defined as shown in lines 10 and 11, respectively. un is employed to estimate the projection of
each image pixel over the direction spanned by the selected pixel, en, deriving in the projection vector, vn

in line 12. Finally, this information is subtracted from C in line 13.
Accordingly, C retains in next iterations the spectral information that cannot be represented by the

already selected pixels en. For this reason, once the pmax pixels have been extracted, C contains the spectral
information that will be not recovered after the decompression process. Hence, it is represented of the
losses introduced by the HyperLCA compressor. Consequently, the remaining information in C could
be used to establish extra stopping conditions based on quality metrics, such as the Signal-to-Noise Ratio
(SNR) or the Maximum Absolute Difference (MAD). In this work, these extra stopping conditions have been
discarded, and thus, a fixed number of pmax iterations is executed for all image blocks, Mk.
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Algorithm 1 HyperLCA Transform.

Inputs:
Mk = [r1, r2, ..., rBS], pmax
Outputs:
µ̂; µ̂; E = [e1, e2, ..., epmax ]; V = [v1, v2, ..., vpmax ]
Algorithm:

1: {Additional stopping condition initialization.}
2: Average pixel: µ̂;
3: Centralized image: C = Mk − µ̂ = [c1, c2, ...cBS];
4: for n = 1 to pmax do
5: for j = 1 to BS do
6: Brightness Calculation: bj = c′j · cj;
7: end for
8: Maximum Brightness: jmax = argmax(bj);
9: Extracted pixels: en = rjmax ;

10: qn = cjmax ;
11: un = qn/bjmax ;
12: Projection vector: vn = u′n ·C;
13: Information Subtraction: C = C− qn · vn;
14: {Additional stopping condition checking.}
15: end for

2.1.4. HyperLCA Preprocessing

To ensure an efficient entropy coding of the HyperLCA Transform outputs, they must be first adapted
in the HyperLCA Preprocessing stage. This transformation process is performed in two steps:

Scaling V Vectors

V vectors represent the projection of each pixel within Mk over the direction spanned by each
orthogonal vector, un, in each iteration. Therefore, potential values of each element of V vectors are in the
range of (−1, 1]. However, the later Entropy-coding stage works exclusively with integers. Consequently,
elements within V must be scaled to fully exploit the dynamic range offered by the input parameter Nbits,
as shown in Equation (2). After doing so, the scaled Vvectors are rounded up to the closest integer values.

vjscaled
= (vj + 1) · (2Nbits−1 − 1) (2)

Error Mapping

The codification stage also exploits the redundancies within the data in the spectral domain to assign
the shortest word length to the most common values. With it, the compression ratio achieved by the
HyperLCA Transform could be even increased. To this end, the output vectors of the HyperLCA Transform (µ̂,
E and scaled V) are lossless pre-processed in the Error Mapping stage. To do so, the prediction error mapper
described in the Consultative Committee for Space Data Systems (CCSDS) Blue Books is employed [35].
In this regard, each output vector, (µ̂, en and scaled vn) is individually processed and transformed to be
exclusively composed of positive integer values closer to zero.
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2.1.5. HyperLCA Entropy Coding

The Entropy Coding is the last stage of the HyperLCA compressor. It follows a lossless entropy-coding
strategy based on the Golomb–Rice algorithm [36]. As in the Error Mapping stage, each single output vector
is independently coded. For doing so, the compression parameter, M, is estimated as the average value
of the targeted vector. Afterwards, each of its elements is divided by M in order to obtain the results of
the division, the quotient (q) and the remainder (r). On one hand, the quotient, q, is codified using unary
code. On the other hand, the remainder, r, could be coded using b = log2(M) + 1 bits if M is power of 2.
Nevertheless, M can actually be any positive integer. For this reason, the remainder, r is coded as plain
binary using b− 1 bits for r values smaller than 2b −M, otherwise it is coded as r + 2b −M using b bits.

2.1.6. HyperLCA Data Types and Precision Evaluation

Most of the compression performance achieved by the HyperLCA algorithm is obtained in the
HyperLCA Transform stage, originally designed to use floating-point precision. However, FPGA devices
are, in general, more efficient dealing with integer operations. Additionally, the execution of floating-point
operations in different devices may produce slightly different results. For this reason, the performance of
the HyperLCA algorithm using integer arithmetic was largely drawn in [37] in order to adapt it for being
more suitable for this kind of device. In particular, it was used the fixed-point concept in a custom way
employing integer arithmetic and bits shifting [38]. In this previous work, two different versions of the
HyperLCA Transform were considered employing 32 and 16 bits, respectively, for representing the image
values stored in the centralized version of the hyperspectral frame to be processed, C.

It is important to note that the aforementioned proposed versions were developed for working with
hyperspectral images whose element values could be represented with up to 16 bits per pixel per band
as maximum. In this context, the quality of the compression results is very similar between the 32-bits
fixed point and the single precision floating-point versions. Nevertheless, the compression performance
obtained by the 16-bit version is not as competitive as the other two solutions. It is shown that this 16-bit
approach provides its best performance for very high compression ratios, small BS and images packaged
using less than 16 bits per pixel per band. This makes the 16-bits version into a very interesting option for
applications with limited hardware resources, especially the availability of in-chip memory, one of the
weaknesses of FPGAs.

On this basis, we have made some performance-enhancing improvements to the 16-bit version to
obtain better compression results. In this context, we have assumed that the available capturing system
codes hyperspectral images with a maximum of 12 bits, which is also the most common scenario in
remote-sensing applications [39,40] and in the one outlined in this manuscript. Table 1 summarizes the
number of bits used by the two algorithm versions introduced in [37], known as I32 and I16, and the one
described in this work, referred as to I12, for some algorithm variables. It should be pointed out that when
integer arithmetic is used, V vectors are directly represented using integer data types and do not need to
be scaled and rounded to integer values.

As described in Section 2.1.3, the information presents in matrix C decreases with every iteration, n,
though some specific values may increase in some quite unlikely situations. For this reason, initial values
of C were divided by 2 in the previous 16-bit version in order to avoid overflowing, what directly decreases
the precision in one bit. In the new version proposed in this work, this fact is discarded since we have
2 bits extra for these improbable situations. As can be noticed from Table 1, image C is stored employing
16 bits in the new I12 version as well as in the I16 version. However, it is assumed that images values are
coded employing 12 bits as maximum instead of 16 bits. It permits having 2 extra bits for representing the
integer part of the fixed-point values of C elements. Consequently, image precision is not altered as in
previous 16-bit version for dealing with possible overflowing scenarios. Additionally, this new version
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also allows having 2 bits for representing the decimal part of the fixed-point values of matrix C, which is
not possible in the I16 version.

Table 1. Number of bits used for the integer and decimal parts used to represent the variables involved in the
HyperLCA Transform. Three versions of the algorithm were developed to use integer arithmetic (I32, I16, I12).

Variable
Integer Part Decimal Part Total

I32 I16 I12 I32 I16 I12 I32 I16 I12

C 20 16 14 12 0 2 32 16 16
b 48 48 48 16 16 16 64 64 64
q 20 20 20 12 12 12 32 32 32
u 2 2 2 30 30 30 32 32 32
v 2 2 2 30 30 30 32 32 32
µ 16 16 12 0 0 0 16 16 12

2.2. FPGA Implementation of the HyperLCA Algorithm

An FPGA (Field-Programmable Gate Array) can be seen as a whiteboard for designing specialized
hardware accelerators (HWacc), by composition of predefined memory and logic blocks that are available
in the platform. Therefore, a HWacc is a set of architectural FPGA resources, connected and configured to
carry out a specific task. Each vendor proposes its own reconfigurable platform, instantiating a particular
mix of such resources, around a particular interconnection architecture.

FPGAs provide flexibility to designers, since the silicon adapts to the solution, instead of fitting the
solution to the computing platform as is the case of GPU-based solutions. On top of that, FPGA-based
implementations can take advantage of the fine-grain parallelism of their architecture (operation level)
as well as task-level concurrency. In this paper, the HyperLCA lossy compressor has been implemented
onto a heterogeneous Zynq-7000 SoC (System-on-a-Chip) from Xilinx that combines a Processor System
(PS), based on a dual core ARM processor, and a Programmable Logic (PL), based on a Artix-7/Kintex-7
FPGA architecture.

The development process followed a productive methodology based on High-Level Synthesis (HLS).
This methodology focuses the effort on the design and verification of the HWacc, as well as the exploration
of the solution space that helps to speed up the search for value-added solutions. The starting point of a
methodology based on HLS is a high-abstraction model of the functionality to be deployed on the FPGA,
usually described by means of high-level programming languages, such as C or C++. Then, HLS tools can
generate the corresponding RTL (Register Transfer Level) implementation, functionally equivalent to the
C or C++ model [41,42].

Productivity is the strongest point of HLS technology, and one of the main reasons why hardware
architects and engineers have been recently attracted to it. However, HLS technology (more specifically,
the tools that implement the synthesis process) has some weaknesses. For example, despite the fact that the
designer can describe a modular and hierarchical implementation of a HWacc (i.e., grouping behavior via
functions or procedures), all sub-modules are orchestrated by a global clock due to the way the translation
to RTL from C is done. Another example is the rigid semantic when specifying dataflow architectures,
allowing a reduced number of alternatives. This prevents the designer from obtaining optimal solutions
for certain algorithms and problems [43,44], as was the case of the HyperLCA compressor. Therefore,
to overcome the limitations of current HLS tools, a hybrid solution that combines modules developed
using VHDL and HLS-synthesized C or C++ blocks has been selected. The result allows the achievement
of the maximum performance. Otherwise, it could not be possible to realize either the synchronization
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mechanisms or the parallel processing proposed in this work. On top of that, this approach makes it
also possible to optimize the necessary resources because of the use of custom producer-consumer data
exchange patterns that are not supported by HLS tools.

The four main stages of the HyperLCA compressor, described in Section 2.1 and shown in Figure 1,
have been restructured in order to better adapt to devices with a high degree of fine-grain parallelism such
as FPGAs. Thus, the operations involved in these parts of the HyperLCA algorithm have been grouped in
two main stages: HyperLCA Transform and HyperLCA Coder. These new stages can run in parallel, which
improves the performance.

The Initialization stage (Section 2.1.2), where the calculation of the pmax parameter is done,
is considered only at design time. This is because several hardware components, such as internal memories
or FIFOs, must be configured with the appropriate size. In this sense, it is worth mentioning that the
pmax value (Equation (1)) depends on other parameters also known at design time (the minimum desired
compression ratio (CR), block size (BS) and the number of bits (Nbits) used for scaling the projection
vectors, V, and, therefore, can be fixed for the HWacc.

2.2.1. HyperLCA Transform

HyperLCA Transform stage performs the operations of the HyperLCA transform itself (described in
Section 2.1.3), and also the computation of the average pixel and the scaling of V vector. These are the most
computational demanding operations of the algorithm and, together with the fact that they are highly
parallelizable by nature, are good candidates for acceleration.

Figure 2 shows an overview of the hardware implementation of the HyperLCA Transform stage.
Avg_Cent, Brightness and Proj_Sub modules have been modeled and implemented using the aforementioned
HLS tools, while the memory buffers and custom logic that integrates and orchestrates all the components
in the design have been instantiated and implemented using VHDL language, respectively. This HWacc
has a single entry corresponding to a hyperspectral block (Mk) that will be compressed, while the output
is composed of three elements (which differs to the output of Algorithm 1) in order to achieve a high
level of parallelism. It must also be mentioned that the output of the HyperLCA Transform stage feeds the
input of the HyperLCA Coder stage that performs the error mapping and entropy coding in parallel. Thus,
the centroid, µ̂, is obtained as depicted in Algorithm 1, while the pmax most different hyperspectral pixels,
E, are not directly obtained. In this regard, the HWacc provides the indexes of such pixels, jmax, in each
loop iteration of Algorithm 1 (outer loop), while the HyperLCA Coder is the responsible to obtaining each
hyperspectral pixel, en, from the external memory, in which is stored the hyperspectral image, to build the
vector of most different hyperspectral pixels, E. Finally, the projection of pixels within each image block,
V, is provided by the HWacc in a batch mode, i.e., each loop iteration (outer loop of Algorithm 1) obtains a
projection (vn) that forms part of the V vector.

The architecture of the HLCA Transform HWacc can be divided into two main modules: Avg_Cent,
which corresponds to lines 2 and 3 of Algorithm 1, and Loop_Iter (the main loop body, lines from 5 to
14). These modules are connected by a bridge buffer (BBuffer), whose depth is only 32 words, and also
share a larger buffer (SBuffer) with capacity to store a complete hyperspectral block. The size of the SBuffer
depends on the BS algorithm parameter and its depth is determined at design time. The role of this SBuffer
is to avoid the costly access to external memory, such it is the case of double data rate (DDR) memory in
the Zynq-7000 SoCs.

The implementation of the SBuffer is based on a first-in, first-out (FIFO) memory that is written
and read by different producers (i.e., Avg and Brightness) and consumers (i.e., Cent and Projection) of
the original hyperspectral block and the intermediate results (transformations). Since there are more
than one producer and consumer for the SBuffer, a dedicated synchronization and control access logic
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has been developed in VHDL (not illustrated in Figure 2). The use of a FIFO contributes to reduce the
on-chip memory resources in the FPGA fabric, being its use feasible because of the linear pattern access of
the producers and consumers. However, this type of solution would not have been possible with HLS
because the semantic of stream-based communication between stages in a dataflow limits the number of
producers and consumer to one. Also, it is not possible, with the used HLS technology, to exploit inter-loop
parallelism as is done in the proposed solution. Notice that there is a data dependency between iterations
in Algorithm 1 (centralized block, C) and, therefore, the HLS tool infers that the next iteration must wait
for the previous one to finish, resulting in fact in sequential computation. However, a deeper analysis of
the behavior of the algorithm shows that the computation of the brightest pixel for iteration n + 1 can be
performed as it has received the output of the subtraction stage, which will be still processing iteration n.

Centroid (  ) MB Index (jmax)

Avg_Cent

SBuffer

Figure 2. Overview of the HyperLCA Transform hardware accelerator. Light blue and white boxes represent
modules implemented using HLS. Light red boxes and FIFOs represent glue logic and memory elements
designed and instantiated using VHDL language.

The Avg_Cent module has been developed using HLS technology and contains two sub-modules,
Avg and Cent, that implement lines 2 and 3 of Algorithm 1, respectively.

Avg This sub-module computes the centroid or average pixel, µ̂, of the original hyperspectral block, Mk,
following line 2 of Algorithm 1, and stores it in CBuffer, a buffer that shares with Cent sub-module.
During this operation, Avg forwards a copy of the centroid to the HyperLCA Coder via a dedicated
port (orange arrow). At the same time, the Avg sub-module writes all the pixels of the Mk into the
SBuffer. A copy of the original hyperspectral block, Mk, will be available once Avg finishes, ready to
be consumed as a stream by Cent, which reduces the latency.

Figure 3 shows in detail the functioning of the Avg stage. The main problem in this stage is the way
the hyperspectral data is stored. In our case, the hyperspectral block, Mk, is ordered by the bands
that make up a hyperspectral pixel. However, to obtain the centroid, µ̂, the hyperspectral block
must be read by bands (in-width reading) instead of by pixels (in-depth reading). We introduce an
optimization that handles the data as it is received (in-depth), avoiding the reordering of the data
to maintain a stream-like processing. This optimization consists of an accumulate vector, whose
depth is equal to the number of bands that stores partial results of the summation for each band,
i.e., the first position of this vector contains the partial results of the first band, the second position
the partial results of the second band and so on. The use of this vector removes the loop-carry
dependency in the HLS loop that models the behavior of the Avg sub-module, saving processing
cycles. The increase in resources is minimal, which is justified by the gain in performance.
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Figure 3. Overview of Avg stage.

Cent This sub-module reads the original hyperspectral block, Mk, from the SBuffer to centralize it
(C). This operation consists of subtracting the average pixel, calculated in the previous stage,
from each hyperspectral pixel of the block (line 3 of Algorithm 1). Figure 4 shows this process,
highlighting the elements that are involved in the centralization of the first hyperspectral pixel. Thus,
the Cent block reads the centroid, µ̂, which is stored in the CBuffer, as many times hyperspectral
pixels have the original block (i.e., BS times in the example illustrated in Figure 4). Therefore,
CBuffer is an addressable buffer that permanently stores the centroid of the current hyperspectral
block that is being processed. The result of this stage is written into the BBuffer FIFO, which
makes unnecessary an additional copy of the centralized image, C. As soon as the centralized
components of the hyperspectral pixels are computed, the data is ready at the input of the Loop_Iter
module and, therefore, it can start to perform its operations without waiting for the block to be
completely centralized.
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opera
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ct

io
n

nb b
ands

Figure 4. Overview of Cent stage.

The Loop_Iter module instantiates the Brightness and Proj_Sub sub-modules which have been designed
and implemented using HLS technology. Both modules are connected by two FIFO components (uVectorB
and qVectorB) using customized VHDL code to link them. Unlike Avg_Cent module, Loop_Iter module is
executed several times (specifically pmax times, line 4 of Algorithm 1) for each hyperspectral block that is
being processed.

Brightness This sub-module starts as soon as there is data in the BBuffer. In this sense, Brightness
sub-module works in parallel with the rest of the system; the input of the Brightness module is the
output of Cent module in the first iteration, i.e., the centralized image, C, while the input for all other
iterations is the output of Subtraction sub-module that corresponds to the image for being subtracted,
depicted as X for the sake of clarity (see brown arrows in Figure 2).

Brightness sub-module has been optimized to achieve a dataflow behavior that takes the same time
regardless of the location of the brightest hyperspectral pixel. Figure 5 shows how the orthogonal
projection vectors qn and un are obtained by the three sub-modules in Brightness. First, the Get
Brightness sub-module reads in order the hyperspectral pixel of the block from the BBuffer (C or X,
it depends on the loop iteration) and calculates its brightness (bj) as specified in line 6 of Algorithm 1.
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Get Brightness also makes a copy of the hyperspectral pixel in an internal buffer (actual_pixel) and
in SBuffer. Thus, actual_pixel contains the current hyperspectral pixel whose brightness is being
calculated, while SBuffer will contain a copy of the hyperspectral block with transformations (line 6
and assignment in line 13 of Algorithm 1).

Once the brightness of the current hyperspectral pixel is calculated, the Update Brightness sub-module
will update the internal vector brightness_pixel if the current brightness is greater than the previous
one. Regardless of such condition, the module will empty the content of actual_pixel in order to keep
the dataflow with the Get Brightness sub-module. The operations of both sub-modules are performed
until all hyperspectral pixels of the block are processed (inner loop, lines 5 to 7 of Algorithm 1).
The reason to use a vector to store the brightest pixel instead of a FIFO is because the HLS tool would
stall the dataflow otherwise.

Finally, the orthogonal projection vectors qn and un are accordingly obtained from the brightest pixel
(lines 10 and 11 of Algorithm 1) by the module Build quVectors. Both are written in separate FIFOs:
qVectorB and uVectorB, respectively. Furthermore, the contents of these FIFOs are copied in qVector
and uVector arrays in order to get a double space memory that does not deadlock the system and
allows Proj_Sub sub-module to read several times (concretely BS times) the orthogonal projection
vectors qn and un to obtain the projected image vector, vn, and transform the current hyperspectral
block. This module also returns the index of the brightest pixel, jmax, so that the HyperLCA Coder
stage reads the original pixel from the external memory, such as DDR, where the hyperspectral image
is stored in order to build the compressed bitstream.

...

...

......

.

Centralized block (C)

nb b
ands

BS pixels

nb b
ands

Get

Brightness
Read

actual_pixel (rj)

Figure 5. Overview of Brightness stage.

Proj_Sub Although this sub-module is represented by separate Projection and Subtraction boxes in Figure 2,
it must be mentioned that both perform their computations in parallel. The Proj_Sub sub-module
reads just once the hyperspectral block that was written in SBuffer by the Brightness sub-module
(X). Figure 6 shows an example of Projection and Subtraction stages. First, each hyperspectral pixel
of the block is read by the Projection sub-module to obtain the projected image vector according to
line 12 of Algorithm 1. At the same time, the hyperspectral pixel is written in PSBuffer, which can
store two hyperspectral pixels. Two is the number of pixels because the Subtraction stage begins right
after the first projection on the first hyperspectral pixel is ready, i.e., the executions of Projection and
Subtraction are shifted by one pixel. Figure 6 shows such behavior. While pixel r1 is being consumed
by Subtraction, pixel r2 is being written in PSBuffer. During the projection of the second hyperspectral
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pixel (r2), the subtraction of the first one (r1) can be performed since all the input operands, included
the projection vn, are available, following the expression in line 13 of Algorithm 1.

The output of the Projection sub-module is the projected image vector, vn, which is forwarded
to the HyperLCA Coder accelerator (through the Projection port) and to the Subtration sub-module
(via the PBuffer FIFO). At the same time, the output of the Subtraction stage feeds the Loop_Iter
block (see purple arrow, labeled as X, in Figure 2) with the pixels of the transformed block in the
ith iteration. It means that Brightness stage can start the next iteration without waiting to get the
complete image subtracted. Thus, the initialization interval between loop-iterations is reduced as
much as possible because the Brightness starts when the first subtracted data is ready.

...

...

...
...

nb b
ands

BS pixels

... ...
...

.

Hyperspectral block (X)

Projected

......

uVector

nb b
ands vnvn

Figure 6. Example of Projection and Subtraction stages.

The FPGA-based solution described above highlights how the operations are performed in parallel to
make the most out of such technology. Also, it has been spotted specific synchronization scenarios that are
not possible to design using solely HLS. due to the current communication semantics supported by the
synthesis tools. For example, is not possible for current synthesis tools to perform an analysis of the data
and control dependencies such as the one done in this work. However, a hybrid solution based on HLS
and hand-written VHDL code to glue the RTL models synthesized from C/C++ models, brings to life an
efficient dataflow (see Figure 7). In this regard, the use of optimal sized FIFOs to interconnect the modules
is key. For example, while the Brightness sub-module is filling the SBuffer, the Projection sub-module is
draining it, and at the same time this sub-module supplies to the Subtraction sub-module with the same
data read from SBuffer. Finally, Subtraction sub-module feeds back the Brightness sub-module through the
BBuffer FIFO. The Brightness sub-module fills, in turn, the SBuffer, with the same data, closing the circle;
this loop is repeated pmax times.

Furthermore, the initialization interval between image blocks has been reduced. The task performed
by the Avg sub-module for block k + 1 (see Figure 7) can be scheduled at the same time that the Projection
and Subtraction sub-modules are computing their outputs for block k, and right after the completion of the
Brightness sub-module for block k. This is possible since the glue logic discards the output of the Subtraction
sub-module during the last iteration. This logic ensures that the BBuffer is filled with the output from the
Avg sub-module that feeds the first execution of Brightness for the first iteration of block k + 1, resulting in
an overlapped execution of the computation for blocks k and k + 1.
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Figure 7. Dataflow of HyperLCA Transform hardware accelerator. Overlapping of operations within
inter-loops and inter-blocks.

Unfortunately, despite the optimizations introduced in the dataflow architecture, the HWacc is not
able to reach the performance target as shown by the experimental results (see Section 3). The value in
the column labeled as 1 PE (Processing Element) is clearly below the standard frame rates provided by
contemporary commercial hyperspectral cameras. However, the number of FPGA resources required by
the one-PE version of the HWacc is very low (see Section 3.2) which makes it possible to implement further
parallelism strategies to speed up the compression process. Thus, three options open up for solving the
performance problem.

First, task-level parallelism approach is possible by means of the use of several instances of the
HWacc working concurrently. Second, increase the intra-HWacc parallelism using multiple operators,
computing several pixel bands at the same time. Thirdly, a combination of the two previous approached.
Independently of the strategy chosen, the limiting factor is the version of the Xilinx Zynq-7000
programmable SoC, that would have enough resources to support the design. In Section 4, a detailed
analysis of several single-HWacc (with variations in the number of PEs) and multi-HWacc versions of the
design is drawn.

So far, it has been described the inner architecture of a HWacc that only performs a computational
operation over a single band component of a hyperspectral pixel. However, it can be modified to increase
the number of bands that are processed in parallel. Thus, the HWacc of HyperLCA compressor turns from
a single-PE to multiple PEs. This fact opens two new challenges. First challenge is to increase the width
of the input and output ports of the modules, in accordance with the number of bands that would be
processed in parallel. It must be mentioned that it is technologically possible because HLS-based solutions
allow designers to build their own data types. For example, if a band component of a hyperspectral
pixel is represented by an unsigned integer of 16-bits, we could define our own data type consisting of
an unsigned integer of 160-bits packing ten bands of a hyperspectral pixel (see Figure 8). The second
challenge has to do with the strategy to process the data in parallel. In this regard, a solution based on the
map-reduce programming model has been followed.

Figure 8 shows an example of the improvements applied to the Cent stage, following the
above-mentioned optimizations. The input of this stage is the hyperspectral block, Mk, and the average
pixel, µ̂, which are read in blocks of N-bands. The example assumes that the block is composed of ten
bands and uses an user data type, specifically an unsigned int of 160-bits (10 bands by 16-bits to represent
each band). Then, both blocks are broken down into the individual components that feed the PEs in an



Remote Sens. 2020, 12, 3741 15 of 37

orderly fashion. This process is also known as map phase in the map-reduce programming model [45].
It must be mentioned that the design needs as many PEs as number of divisions made in the block.

Once the PEs have performed the assigned computational operation, the reduce phase of the
map-reduce model is executed. For Cent sub-module, this stage consists of gathering in a block the
partial results produced by each one of the PEs. Thus, a new block of N-bands is built, which in turn is
part of the centralized block (C), which is the output of Cent sub-module.

Centroid ( )

...

r

uint<160>

Figure 8. Map-reduce programming model and data packaging on Cent stage.

2.2.2. Coder

The HyperLCA Coder is the second of the HWacc developed, responsible for the error mapping and
entropy-coding stages of the HyperLCA compression algorithm (Figure 1). The coder module teams
up with the transform module to perform in parallel the CCSDS prediction error mapping [35] and the
Golomb–Rice [36] entropy-coding algorithms as the different vectors are received from the HyperLCA
Transform block.

The HyperLCA transform block generates the centroid, µ̂, extracted indexes of pixels, jmax,
and projection vectors, vn, for an input hyperspectral block, Mk. These arrays are consumed as they
are received, reducing the need for large intermediate buffers. To minimize the necessary bandwidth to
the memory that stores the hyperspectral image, only the indexes of the selected pixels in each iteration of
the transform algorithm (line 8 of Algorithm 1) are provided to the coder (MB_index port).

The operation of the transform and coder blocks overlaps in time. Since the coder takes approximately
half of the time the transform needs to generate each vector (see Section 3.2) for the maximum number of
PEs (i.e., the maximum performance achieved), a contention situation is not taking place, reducing
the pressure over the FIFOs that connect both blocks and, therefore, requiring less space for these
communication channels.

Figure 9 sketches the internal structure of the HyperLCA Coder that has been modeled entirely using
Vivado HLS. It is a dataflow architecture comprising three steps. During the first step, the prediction mapping
and entropy coding of all the input vectors are performed by the coding command generator. The result of this
step is a sequence of commands that are subsequently interpreted by the compressed bitstream generator.
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Figure 9. Overview of the HyperLCA Coder hardware accelerator.

The generation of the bitstream was extracted from the entropy-coding original functionality, which
enabled a more efficient implementation of the latter, which could be re-written as a perfect loop and, therefore,
Vivado HLS was able to generate a pipelined datapath with the minimum initiation internal (II = 1).

The generation of the compressed bitstream is simple. This module is continuously reading the
cmd_queue FIFO for a new command to be processed. A command contains the operation (unary of binary
coding) as well as the word (quotient or reminder, see Section 2.1.5) to be coded, and the number of bits to
generate. Unary and binary coding functions simply iterate over the word to be coded and produces a
sequence if bits which corresponds to the compressed form of the hyperspectral block.

Finally, the third step packs the compressed bitstream in words and written to memory. For this
implementation, the width of the memory word is 64 bits, the maximum allowed by the AXI Master
interface port for the Zynq-7020 SoC. The bitstream packer module instantiates a small buffer (64 words)
that is flushed to DDR memory once it has been filled. This way, average memory access cycles per word
is optimized by means of the use of burst requests.

As mentioned above, the HyperLCA Transform block feeds the coder with the indexes of the extracted
pixels en, which correspond to the highest brightness as the hyperspectral block is processed. Hence,
it is necessary to retrieve the nb spectral bands from memory before the coder could start generating the
compressed stream for the pixel vector. This is the role played by the pixel reader module. As in the case of
the bitstream packer step, the pixel reader makes it use of a local buffer and issue burst requests to read the
bands in the minimum number of cycles.

While the computing complexity of the coder module is low, the real challenge when it comes
to the implementation of its architecture is to write a C++ HLS model that is consistent through the
whole design, verification and implementation processes. To achieve this goal, it has been provided the
communication channels with extra semantic so as to keep the different stages sync, despite the fact the
model of computation of the architecture falls into the category of GALS (Globally Asynchronous, Locally
Synchronous) systems. Side-channel information is embedded in the cmd_queue and compressed_stream
FIFOs that connects the different stages of the coder. This information is used by the different modules
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to reset their internal states or stop and resume their operation (i.e., special commands to be interpreted
by the bitstream generator or a flush signal as input to the packing module). This way, it is possible to
integrate under a single HLS design all the functionality of the coder, which simplifies and speeds up the
design process. On top of that, this strategy allowed avoiding the need to tailor the C++ HLS specification
to make it usable in different steps of the design process. For example, it is common to write variations of
the model depending on whether functional (C simulation) or RTL verification (co-simulation) is taking
place due to the fact that the former is based on an untimed model and the latter introduces timing
requirements [46,47].

Designing for parallelism is key to obtain the maximum performance. The dataflow architecture
of the coder ensures an inter-module level of concurrency. However, the design must be balanced as
to the latency of the different stages in the dataflow. Otherwise, the final result could be jeopardized.
As mentioned before, decoupling the generation of the compressed bitstream from the entropy-coding
logic, led to a more efficient implementation of the latter by the HLS synthesis tool. Also, this change
helped to redistribute the computing effort, achieving a more balanced implementation.

In the first stage of the dataflow (coding command generator) a simple logic that controls the encoding of
each input vector plus a header is implemented. It is an iterative process that performs the error mapping
and error coding over the centroid, and p_max times over the extracted pixels and projections vectors.
The bulk of this process is, thus, the encoding algorithm. The encoding is delegated in another module
that implements an internal dataflow itself. In this way, it is possible to reduce the interval between two
encoding operations. As can be seen in Figure 9, the prediction mapping and entropy-coding sub-modules
communicates through a ping-pong buffer for the mapped vector.

To conclude this section, it is worth mentioning a couple of optimizations carried out related to the
operations pow and log, which are used by the prediction mapping and entropy-coding algorithms. This
type of arithmetic operation is costly to implement in FPGAs since the generated hardware is based on
tables that consume on-chip resources (mainly BRAM memories), and an iterative processes that boosts
latency. Since the base used in this application is 2, it can be largely simplified. Thus, we can substitute
the pow and log operations by a logical shift instruction and the GCC compiler __builtin_clz(x) built-in
function, respectively. This change is part of the refactoring process of the reference code implementation
(golden model) that is almost mandatory at the beginning of any HLS project. The __builtin_clz(x) function
is synthesizable and counts the leading zeros of the integer x. Therefore, the computation of the lowest
power of 2 higher than M, performed during the entropy coding, is redefined as follows:

Listing 1: FPGA implementation of costly arithmetic operations during entropy coding.

1 //Orig ina l code
2 b = log2 (M) + 1 ;
3 d i f f e r e n c e = pow( 2 , b ) − M;
4

5 //FPGA opt imizat ion
6 b = (32 − _ _ b u i l t i n _ c l z (M) ) ;
7 d i f f e r e n c e = (1<<b ) − M;

2.3. Reference Hyperspectral Data

In this section, we introduce the hyperspectral imagery used in this work to evaluate the performance
of the proposed computing approach using reconfigurable logic devices. This data set is composed of 4
hyperspectral images that were also employed in [29], where the HyperLCA algorithm was implemented
in low-power consumption embedded GPUs. We have kept the same data set in order to compare
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in Section 3 the performance of the developed FPGA-based solution with the results obtained by the
GPU accelerators.

In particular, the test bench was sensed by the acquisition system extensively analyzed in [48].
This aerial platform mounts a Specim FX10 pushbroom hyperspectral camera on a DJI Matrice 600 drone.
The image sensor covers the range of the electromagnetic spectrum between 400 and 1000 nm using
1024 spatial pixels per scanned cross-track line and 224 spectral bands. Nevertheless, the hyperspectral
images used in the experiments only retain the spectral information of 180 spectral bands. Concretely,
the first 10 spectral bands and the last 34 bands have been discarded due to the low spectral response of
the hyperspectral sensor at these wavelengths.

The data sets were collected over some vineyard areas in the center of Gran Canaria island (Canary
Islands, Spain) and in particular, in a village called Tejeda, during two different flight campaigns. Figure 10
and Figure 11 display some Google Maps pictures of the scanned terrain in both flight missions, whose
exact coordinates are 27°59′35.6′′N 15°36′25.6′′W (green point in Figure 10) and 27°59′15.2′′N 15°35′51.9′′W
(red point in Figure 11), respectively. Both flight campaigns were performed at a height of 45 m over the
ground, which results in a ground sampling distance in line and across line of approximately 3 cm.

Figure 10. Google Maps pictures of the vineyard areas sensed during the first flight campaign. False RGB
representations of the hyperspectral images employed in the experiments.

The former was carried out with a drone speed of 4.5 m/s and the camera frame rate set to
150 frames per second (FPS). In particular, this flight mission consisted of 12 waypoints that led to a
total of 6 swathes, but only one was used for the experiments, which has been highlighted in green in
Figure 10. Two portions of 1024 hyperspectral frames with all their 1024 hyperspectral pixels were selected
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from this swath to generate two of the data sets that compose the test bench. A closer view of these
selected areas can be also seen in Figure 10. These images are false RGB representations extracted from the
acquired hyperspectral data.

The latter was carried out with a drone speed of 6 m/s and the camera frame rate set to 200 FPS.
The entire flight mission consisted of 5 swathes, but only one was used for the experiments in this work,
which has been highlighted in red in Figure 11. From this swath, two smaller portions of 1024 hyperspectral
frames were cut out for simulations. A closer view of these selected areas is also displayed in Figure 11.
Once again, they are false RGB representations extracted from the acquired hyperspectral data. For more
details about the flight campaigns, we encourage the reader to see [48].

Figure 11. Google Maps pictures of the vineyard areas sensed during the second flight campaign. False
RGB representations of the hyperspectral images employed in the experiments.

3. Results

3.1. Evaluation of the HyperLCA Compression Performance

The goodness of the I12 version of the HyperLCA algorithm proposed in this work has been evaluated
and compared with previous I32 and I16 versions of the algorithm presented in [37] and the single precision
floating-point (F32) implementation presented in [29]. For doing so, the hyperspectral imagery described
in Section 2.3 has been compressed/decompressed using different settings of the HyperLCA compressor
input parameters.

In this context, the information lost after the lossy compression process has been analyzed using
three different quality metrics. Concretely, the Signal-to-Noise Ratio (SNR), the Root Mean Squared Error
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(RMSE) and the Maximum Absolute Difference (MAD), which are shown in Equations (3)–(5), respectively.
The SNR and the RMSE give an idea of the average information lost in the compression-decompression
process. Bigger values of SNR are indicative of better compression performance. On the contrary, higher
RMSE values mean that the lossy compression has introduced bigger data losses. The MAD assesses
the amount of lost information for the worst reconstructed image value. For our targeted application,
the dynamic range is 212 = 4096 and hence, the worst possible MAD value is 4095. For the sake of clarity,
the aforementioned metrics have been calculated using the entire compressed–decompressed images, i.e.,
after the HyperLCA algorithm has finished to compress all image blocks, MK.

SNR = 10 · log10(
∑nb

i=1 ∑
np
j=1(Ii,j)

2

∑nb
i=1 ∑

np
j=1(Ii,j − Ici,j)2

) (3)

RMSE =
1

np · nb
·

√√√√ nb

∑
i=1

np

∑
j=1

(Ii,j − Ici,j)2 (4)

MAD = max(Ii,j − Ici,j) (5)

Table 2 shows the average results obtained for each configuration of the HyperLCA compressor input
parameters using the data set described in Section 2.3. Different conclusions can be drawn from these
results. First of all, it is confirmed that the I12 version offers significantly better-quality compression results
than previous I16 version, employing the same hardware resources. These gaps are even wider for smaller
compression ratios. This is because the losses introduced by the decrease in the data precision compare to
the previous I16 version, as mentioned in Section 2.1.6, is disguised by the bigger losses introduced by the
compression process itself for higher compression ratios.

Table 2. Comparison of the compression results for the four versions of the HyperLCA algorithm under
study: I12, I16, I32 and F32.

Nbits BS CR
SNR MAD RMSE

I12 I16 I32 F32 I12 I16 I32 F32 I12 I16 I32 F32

12

1024
12 43.01 38.01 43.12 42.75 24.50 39.00 25.00 25.50 3.12 5.55 3.08 3.22
16 42.27 38.57 42.27 41.97 32.25 41.50 32.25 32.50 3.40 5.21 3.40 3.52
20 41.31 39.13 41.31 41.06 41.25 46.50 41.25 41.25 3.73 4.88 3.80 3.91

512
12 42.99 38.95 43.03 42.68 26.25 34.50 25.00 25.00 3.13 4.98 3.12 3.24
16 42.45 39.36 42.47 42.14 30.75 38.00 30.00 30.50 3.33 4.75 3.33 3.45
20 41.50 39.92 41.48 41.24 39.50 43.75 39.50 40.00 3.72 4.46 3.72 3.83

256
12 43.03 40.00 43.02 42.67 25.00 34.50 25.00 25.50 3.12 4.42 3.12 3.25
16 42.33 40.51 42.32 42.02 34.75 37.25 34.75 35.00 3.38 4.16 3.38 3.50
20 40.94 40.59 40.59 40.73 54.75 57.75 54.75 54.75 3.96 4.13 3.97 4.06

8

1024
12 41.80 36.91 42.19 41.68 23.25 41.50 22.00 22.25 3.62 6.32 3.47 3.69
16 41.63 37.42 41.73 41.27 25.50 41.25 25.50 26.50 3.69 5.95 3.65 3.86
20 41.20 37.89 41.20 40.79 32.25 42.00 32.50 32.25 3.87 5.64 3.87 4.07

512
12 42.49 37.99 42.70 42.26 23.00 38.00 22.75 22.25 3.33 5.57 3.25 3.42
16 42.07 38.64 42.09 41.69 27.50 36.00 26.50 26.75 3.49 5.17 3.48 3.65
20 41.61 39.01 41.60 41.25 31.25 39.50 30.50 31.75 3.68 4.95 3.68 3.84

256
12 42.79 39.35 42.82 42.39 24.75 35.50 25.00 25.00 3.20 4.76 3.19 3.36
16 42.15 39.96 42.13 41.76 30.00 37.00 29.75 29.75 3.45 4.43 3.46 3.61
20 41.80 40.21 41.78 41.44 35.75 37.00 35.75 36.00 3.59 4.31 3.60 3.74
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Additionally, deviations in the values of the three quality metrics employed in this work between
I32, I12 and F32 versions are almost negligible, with the advantage of halving the memory space
required for storing C. Second, it can be also concluded that the HyperLCA lossy compressor is able to
compress the hyperspectral data with high compression ratios and without introducing significant spectral
information losses.

3.2. Evaluation of the HyperLCA Hardware Accelerator

Section 2.1 describes the FPGA-based implementation of the HyperLCA compressor as defined in
Algorithm 1. The architecture of the HWacc is divided into two blocks, Transform and Coder that run in
parallel following a producer-consumer approach. Therefore, for the performance analysis of the whole
solution, the slowest block is the one determining the productivity of the proposed architecture.

The HyperLCA Transform block bears most of the complexity and computational burden of the
compression process. For that reason, several optimizations (see Section 2.1.3) have been applied during
its design in order to achieve a high degree of parallelism and, thus, reduce the latency. One of the
most important improvements is the realization of the map-reduce programming model, to enable an
architecture with multiple PEs (see Figure 8) working concurrently on several bands. The experiments
carried out over the different alternatives for the HyperLCA Transform block are intended to evaluate how
the performance and resource usage of the FPGA-based solution scales, as the number of PEs instantiated
by the architecture grows up.

The configuration of the input parameters has been set as follows: CR parameter has been set to 12,
16 and 20; the BS parameter has been set to 1024, 512 and 256 and; Nbits parameter gets the values 12 and
8. The value of pmax is obtained at design time from these parameters following Equation (1), and are
listed in the last column of Table 3. Concerning the sizing of the various memory elements present in the
architecture, it is determined by two parameters: the number of PEs to instantiate (parallel processing of
hyperspectral bands) and the size of the image block to be compressed. It is worth mentioning that in this
version of the HWacc, the number of PEs must be a divisor of the number of hyperspectral bands in order
to simplify the design of the datapath logic.

First, the data width of the architecture must be defined. Such parameter is obtained multiplying the
number of PEs by the size of the data type used to represent a pixel band. In the version of the HWacc
under evaluation, the I12 alternative has been selected, due to its good behavior (comparable to the I32
version as discussed in Section 2.1.6) and the resource savings it brings. For the I12 version, a band is
represented with an unsigned short int which turns into 16-bit words in memory. On the contrary, choosing
the I32 version, the demand for memory resources and internal buffers (such as the SBuffer) would double,
because an unsigned int data type is used in the model definition. Thus, if the HWacc only instantiates
a PE, the data width will be 16-bits, whereas if the HWacc instantiates 12 PEs (i.e., the HWacc performs
12 operations over the set of bands in parallel), the data width will be 192-bits. Second, the depth of the
SBuffer must be calculated following Equation (6), where BS is the block size, nb the number of bands
(in our case is fixed to 180), and NPEs is the number of processing elements.

SBu f f erDepthmin =
BS · nb
NPEs

(6)

Being optimal as to the use of BRAM blocks within the FPGA fabric is compulsory since this resource
is highly demanded as the number of PEs increases (seen in Table 4). On top of that, keeping the use
of resources under control brings along some benefits such as helping the synthesis tool to generate a
better datapath and, therefore, to obtain an implementation with a shorter critical path or contain the
consumption of energy.
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Table 3. Design-time configurations parameters of the HyperLCA transform hardware block for
hyperspectral images with 180 bands.

Nbits BS CR
Min SBuffer Depth

1 PE 2 PEs 4 PEs 6 PEs 10 PEs 12 PEs
pmax

12

1024
12

184,320 92,160 46,080 30,720 18,432 15,360
12

16 9
20 7

512
12

92,160 46,080 30,720 18,432 15,360 7680
10

16 8
20 6

256
12

46,080 30,720 18,432 15,360 7680 3840
8

16 6
20 4

8

1024
12

184,320 92,160 46,080 30,720 18,432 15,360
17

16 13
20 10

512
12

92,160 46,080 30,720 18,432 15,360 7680
14

16 10
20 8

256
12

46,080 30,720 18,432 15,360 7680 3840
10

16 7
20 6

Data Width (bits) 16 32 64 96 160 192

Table 3 lists the memory requirements demanded by SBuffer for the 108 different configurations of the
HyperLCA Transform block evaluated in this work. The SBuffer component is, by far, the largest memory
instantiated by the architecture and it is implemented as a FIFO. SBuffer component has been generated
with the FIFO generator tool provided by Xilinx which only allows depths that are power of two. Therefore,
from a technical point of view, it is not possible to match the minimum required space of SBuffer with
the obtained from the vendor tools. To mitigate the waste of memory space derived from such constraint
of the tool, the SBuffer has been broken into two concatenated FIFOs (i.e., the output of the first FIFO is
the input of the second) but keeping the facade of a single FIFO to the rest of the system. For example,
the minimum depth of SBuffer for PE = 1 and BS = 256 is 46,080. With a single FIFO, the smallest depth
with enough capacity generated by Xilinx tools would be 65,536. Therefore, the unused memory space
represents approximately 30% of the overall resources for SBuffer. However, by using the double FIFO
approach, one FIFO of 32,768 words plus another one of 16384 would be use. Only ≈ 6% of the assigned
resources to SBuffer would be misused.

To evaluate the HyperLCA Transform hardware accelerator, the proposed HWacc architecture has been
implemented using the Vivado Design suite. This toolchain is provided by Xilinx and features a HLS
tool (Vivado HLS) devoted to optimize the developing process of IP (Intellectual Property) components
FPGA-based solutions for their own devices. The first implemented prototype instantiated one HWacc
targeting the XC7Z020-CLG484 version of the Xilinx Zynq-7000 SoC. This FPGA has been selected because
of its low-cost, low-weight and high flexibility, features that make it an interesting device to be integrated
in aerial platforms, such as drones. The aim of this first prototype is to evaluate the capability of a
mid-range reconfigurable FPGAs such as the XC7Z020 chip, for a specific application such as the HyperLCA
compression algorithm. Hence, and due to the amount of resources available on the target device,
the maximum possible number of PEs for the single-HWacc prototype is 12.
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Table 4 summarizes the resources required, which have been extracted from post-synthesis reports,
for each of the 108 versions of the HWacc that process different block sizes of 180-band hyperspectral
images of the data set (see Section 2.3).

Table 4. Post-Synthesis results for the different versions of the HyperLCA Transform for a Xilinx Zynq-7020
programmable SoC and image block up to 180 bands.

BS Num. PEs BRAM18K DSP48E FlipFlops LUTs

256

1 56 (20.0%) 9 (4.09%) 6942 (6.52%) 5194 (9.76%)
2 59 (21.07%) 16 (7.27%) 9112 (8.56%) 8735 (16.42%)
4 71 (25.36%) 30 (13.64%) 20,171 (18.96%) 15,811 (29.72%)
6 71 (25.36%) 62 (28.18%) 29,368 (27.6%) 23,530 (44.23%)

10 84 (30.0%) 102 (46.36%) 47,350 (44.5%) 38,221 (71.84%)
12 71 (25.36%) 122 (55.45%) 56,297 (52.91%) 45,867 (86.22%)

512

1 101 (36.07%) 9 (4.09%) 6988 (6.57%) 5270 (9.91%)
2 102 (36.43%) 16 (7.27%) 9159 (8.61%) 8820 (16.58%)
4 113 (40.36%) 30 (13.64%) 20,215 (19.0%) 16,040 (30.15%)
6 113 (40.36%) 62 (28.18%) 29,406 (27.64%) 23,761 (44.66%)

10 124 (44.29%) 102 (46.36%) 47,420 (44.57%) 38,352 (72.09%)
12 113 (40.36%) 122 (55.45%) 56,342 (52.95%) 45,857 (86.20%)

1024

1 192 (68.57%) 9 (4.09%) 7114 (6.69%) 5468 (10.28%)
2 190 (67.86%) 16 (7.27%) 9278 (8.72%) 8969 (16.86%)
4 198 (70.71%) 30 (13.64%) 20,301 (19.08%) 16,210 (30.47%)
6 199 (71.07%) 62 (28.18%) 29,524 (27.75%) 23,916 (44.95%)

10 204 (72.86%) 102 (46.36%) 47,514 (44.66%) 38,485 (72.34%)
12 199 (71.07%) 122 (55.45%) 56,463 (53.07%) 46,116 (86.68%)

Several conclusions can be derived from these figures. In first place, the amount of digital signal
processors (DSPs), flipflops (FFs) and look-up-tables (LUTs) resources increases with the number of PEs
but are similar for different values of the BS parameter. On the contrary, the demand of BRAMs depends
directly on BS and increases slightly with PE for a given block size. The PE = 10 version needs a special
remark. Such version represents an anomaly in the linear behavior of the resource demand. Even with the
use of a double FIFO approach, as explained before, the total capacity of the BRAM used to instantiate
SBuffer is clearly oversized for that datawidth to assure that a hyperspectral block and its transformations
(Mk and C, respectively) could be stored in-circuit. Second, in addition to the resources needed by the
HWacc of the HyperLCA Transform, it is necessary to take into account those corresponding to the other
components in the system such as the Coder or the DMA (Direct Memory Access) to move the hyperspectral
data (Mk) from/to DDR to/from the hardware accelerators. These extra components will make use of the
remaining resources (specially LUTs, which is the most demanded as can be seen in Table 4), establishing a
maximum of 12 for the number of PEs.

Table 5 shows the post-synthesis results for the HyperLCA Coder block. The resources demanded by
the coder does not depend on the BS parameter or the number of PEs. It is important to mention that the
majority of the BRAM, FFs and LUTs resources are assigned to the two AXI-Memory interfaces that the
HLS tool generates for the Pixel Reader and the Bitstream Packer modules (see Figure 9).

Table 5. Post-Synthesis results for the HyperLCA Coder block for a Xilinx Zynq-7020 programmable SoC
and pixel size up to 180 bands.

BS BRAM18K DSP48E FlipFlops LUTs

2,565,121,024 7 (2.5%) 1 (0.45%) 3464 (3.25%) 4106 (7.71%)
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Table 6 shows the throughput, expressed as the maximum frame rate, for a specific configuration of
the HWacc using two clock frequencies: 100 MHz and 150 MHz (Table A1 extends this information by
adding the number of cycles to compute a hyperspectral block). Columns labeled as PE denote the number
of processing elements instantiated by the HWacc, which in combination with the input parameters (Nbits,
BS, CR and pmax), show the average number of hyperspectral blocks that the HWacc is able to compress
per second (FPS). The maximum frame rate has been normalized to 1024 hyperspectral pixels per block,
which is the size of the frame delivered by the acquisition system.

Table 6. Maximum frame rate obtained using the FPGA-based solution on a Xilinx ZynQ-7020
programmable SoC for hyperspectral images with 180 bands.

Max Frame Rate

Nbits BS CR 1 PE 2 PEs 4 PEs 6 PEs 10 PEs 12 PEs

f1 f2 f1 f2 f1 f2 f1 f2 f1 f2 f1 f2

12

1024
12 37 56 72 108 131 196 178 266 248 370 275 411
16 47 71 91 137 167 250 225 336 310 463 343 511
20 58 87 112 168 204 305 273 408 373 555 410 611

512
12 43 65 83 125 152 228 205 307 284 424 314 469
16 52 78 100 151 183 273 245 366 336 501 370 552
20 69 98 126 189 229 342 304 454 411 612 452 672

256
12 52 78 100 149 181 270 242 361 330 493 364 543
16 65 97 125 187 227 339 301 449 405 604 444 661
20 87 130 167 251 303 453 397 591 523 778 570 847

8

1024
12 27 41 53 79 96 144 131 197 186 278 207 310
16 34 52 67 100 122 183 166 248 232 347 258 386
20 43 65 84 126 153 229 206 309 286 427 317 473

512
12 32 49 62 94 114 170 155 232 217 324 241 360
16 43 65 83 125 152 227 205 307 284 424 370 469
20 52 78 100 151 183 273 245 366 336 501 370 552

256
12 43 65 83 124 150 225 202 303 279 417 309 460
16 57 86 111 166 201 301 268 401 364 543 400 596
20 65 97 125 187 227 339 301 448 405 603 444 661

f1 Clock frequency: 100 MHz. f2 Clock frequency: 150 MHz.

It is worth noting that these results include the transform and coding steps, which are performed in
parallel. Table 7 shows the coding times (in clock cycles) compared to the time needed by the transform
step with the best configuration possible (i.e., PE = 12). The HyperLCA Coder takes roughly 50% less
time on average and, since the relation between both hardware components is a dataflow architecture,
the latency of the whole process corresponds to the maximum; that is, the delay of the Transform step.

One key factor is the minimum frame rate that must be supported for the targeted application. Ideally,
such threshold would correspond to the maximum frame rate provided by the employed hyperspectral
sensor (i.e., 330 FPS). However, the experimental validation of the camera set-up in the drone (Section 2.3),
tells us that frame rates between 150 and 200 are enough to obtain hyperspectral images with the desired
quality, given the speed and altitude of the flights. Therefore, a threshold value of 200 FPS is established as
the minimum throughput to validate the viability of the HyperLCA hardware core. In Table 7, it has been
highlighted (bold type-faced cells) the configurations that would be valid given this minimum. Thus, it can
be observed that the PE = 12 version, for both clock frequencies, and the PE = 10 version at 150 MHz
reach the minimum frame rate, even for the most demanding scenario (Nbits = 8, BS = 1024 and CR = 12).
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In turn, by using lower values for Nbits the compression rate is reduced due to the higher number of V
vectors extracted by the HyperLCA Transform. This means that more computations must be performed to
compress a hyperspectral block. It must be mentioned that the PE = 10 version meets the FPS target in all
the scenarios but the most demanding one when the clock frequency is set to 100 MHz. As for the PE = 10
version, the PE = 6 version does not reach the minimum FPS in a few scenarios (concentrated in Nbits = 8
and BS = 1024), but in can be a viable solution given the actual needs of the application set-up.

Table 7. Comparison of the computation effort made by the Transform and Coding stages.

Nbits BS CR
Cycles per Block

pmax
Transform Delay (12 PEs) Coder Delay

12

1024
12 364,594 184,999 12
16 293,101 137,379 9
20 245,360 105,836 7

512
12 159,901 88,235 10
16 135,691 70,468 8
20 111,546 52,593 6

256
12 69,030 44,095 8
16 56,649 33,294 6
20 44,265 22,587 4

8

1024
12 483,832 194,170 17
16 388,391 147,055 13
20 316,731 111,919 10

512
12 208,129 94,584 14
16 159,834 67,697 10
20 135,748 54,037 8

256
12 81,374 44,579 10
16 62,850 31,424 7
20 56,658 27,163 6

In addition to the performance results listed in Table 6, Figure 12 graphically shows the speed-up
gained by the FPGA-based implementation as the number of PEs increases. The values have been
normalized, using the average time for the PE = 1 version as the baseline. Several conclusions can
be drawn from this figure. First, it is observable that the PE = 12 version of the HWacc performs ×7
times (Nbits = 12) to ×7.6 times (Nbits = 8) faster than PE = 1 version. This configuration is the one
that guarantees the fastest compression results. Second, the speed-up gain is nearly linear for PE = 2
and PE = 4 versions, whereas the scalability of the accelerator drops as the number of PEs is higher
(see Figure 12a,b). This behavior is seen for both Nbits = 8 and Nbits = 12 configurations (see Figure 12c,d).
However, for higher values of BS and CR the shape of the curve shows a better trend though not reaching
the desired linear speed-up.
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Figure 12. Speed-up obtained for multiple PEs compared to the 1 PE version of the HyperLCA HW
compressor. (a) Speed-up Nbits = 8; (b) Speed-up Nbits = 12; (c) Speed-up curve Nbits = 8; (d) Speed-up
curve Nbits = 12.

4. Discussion

In this paper, we present a detailed description of an FPGA-based implementation of the HyperLCA
algorithm, a new lossy transform-based compressor. As fully discussed in Section 3.2, the proposed HWacc
meets the requirements imposed by the targeted application in terms of the frame rate range employed
to capture quality hyperspectral images. In this section, we would like to also provide a comprehensive
analysis of the suitability of the FPGA-based HyperLCA compressor implementation and a comparison
with the results obtained by an embedded System-on-Module (SoM) based on a GPU that has been recently
published [29].

Concretely, María Díaz et al. introduce in [29] three implementation models of the HyperLCA
compressor. In this previous work, the parallelism inherent to the HyperLCA algorithm was exploited
beyond the thread-level concurrency of the GPU programming model taking advantage of the CUDA
steams. In particular, the third approach, referred to as Parallel Model 3 in [29], achieves the highest
speed-up, especially for bigger image blocks (BS = 1024). This implementation model bets for pipelining
the data transfers between the host and the device and the kernel executions for the different image
blocks (Mk). To do this, such proposal exploits the benefits of the concurrent kernel execution through the
management of CUDA streams. Unlike the FPGA-based implementation model proposed in this paper,
only the HyperLCA Transform stage is accelerated in the GPU. In this case, the codification stage is also
pipelined with the HyperLCA Transform stage but executed on the Host using another parallel CPU process.
Table 2 collects the quality results of the compression process issued by the aforementioned GPU-based
implementation model in terms of SNR, MAD and RMSE (F32 version). For more details, we encourage
the reader to see [29].
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To compare the performance of the GPU-based implementation model and the FPGA solution
presented here, we are going to use two assessment metrics: the maximum number of frames compressed
in a second (FPS) and the power efficiency in terms of FPS per watt. The latter figure of merit is of
great importance given the target application, since it is critical to maximize the battery life of the drone.
Additionally, the GPU-based model introduced in [29] has been executed in three different NVIDIA
Jetson embedded computing devices: Jetson Nano, Jetson TX2 and the most recent supercomputer Jetson
Xavier NX.

These modules have been selected for the reasonable computational power provided at a relatively
low power consumption. Table 8 summarizes the most relevant technical characteristics of these embedded
computing boards. As can be seen, the Jetson Nano module integrates the less advanced, oldest generation
of the three GPU architectures, instantiating the fewer execution units or CUDA cores as well. On the
contrary, Jetson Xavier NX represents one of the latest NVIDIA power-efficient products, which offers
more than 10X the performance of its widely adopted predecessor, Jetson TX2.

Table 8. Most relevant characteristics of the NVIDIA modules Jetson Nano, Jetson TX2 and Jetson Xavier NX.

Jetson Nano
LPGPU GPU NVIDIA Maxwell architecture with 128 NVIDIA CUDA cores
CPU Quad-core ARM Cortex-A57 MPCore processor
Memory 4 GB LPDDR4, 1600MHz 25.6 GB/s

Jetson TX2
LPGPU GPU NVIDIA Pascal with 256 CUDA cores
CPU HMP Dual Denver 2/2 MB L2 + Quad ARM A57/2 MB L2
Memory 8 GB LPDDR4, 128 bits bandwidth, 59.7 GB/s

Jetson Xavier NX
LPGPU GPU NVIDIA Volta with 384 NVIDIA CUDA cores and 48 Tensor cores
CPU 6-core NVIDIA Carmel ARM®v8.2 64-bit CPU 6 MB L2 + 4 MB L3
Memory 8 GB 128-bit LPDDR4x @ 51.2GB/s

Table 9 collects the performance results obtained for the three GPU-based implementations of the
HyperLCA and the most powerful implementation of the HWacc in a Zynq-7020 SoC (PE = 12). For each
implementation, it is specified the clock frequency and power budget. Several algorithm parameters have
been tested over 180-band input images. In addition, Figure 13 displays the obtained FPS according to
different configurations of the input image block size (BS). For the sake of simplicity, we only represent
results for Nbits = 8 since the behavior is similar for Nbits = 12 as the reader can see in Table 9.

From the performance point of view, the most competitive FPGA results, compared to the fastest
GPU implementations on Jetson Nano and Jetson TX2, are for the smallest input block size (BS = 256),
resulting very similar to BS = 512 and even better compared to Jetson Nano. For the largest block size
(BS = 1024) the performance of the solutions based on GPUs, is higher because of how the parallelism
is inferred in both architectures. On the one hand, the FPGA architecture can process 12 bands at a
time, overlapping the computation of several groups of pixels due to the internal pipeline architecture.
Therefore, processing time linearly increases as the number of pixels in the image block is higher. On the
other hand, GPUs can process all the pixels in an image block in parallel, regardless the size of the
block. Thus, processing time is nearly constant, independently of the value of parameter BS. However,
this assumption does not hold when it comes to reality, since it has to be taken in consideration the time
required for memory transfers, kernel launches and data dependencies. In this context, the time spent
to setting up and launching the instructions to execute a kernel or perform a memory transfer must be
also taken into account. As analyzed in [29], the time used in transferring image blocks of 256 pixels is
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negligible in relation to the overhead of launching the memory transfers and the additional required logic.
However, the time required for transferring image blocks of 1024 pixels is comparable with the overhead
of initializing the copy. Consequently, the bigger the size of the block, the better performance obtained by
GPU-based implementation. For this reason, the trend of the FPGA performance function (see blue line
in Figure 13) decreases as BS increases, while the opposite behavior is shown for the GPU-based model
regardless of the desired CR.

Table 9. Maximum frame rates obtained by the proposed FPGA implementation and the GPU-based model
introduced in [29] for the NVIDIA boards Jetson Nano, Jetson TX2 and Jetson Xavier NX.

Max Frame Rate

FPGA GPU
Nbits BS CR XC7Z020-CLG484 (MicroZed) Jetson Nano Jetson TX2 Jetson Xavier NX

100 MHz 150 MHz 921.6 MHz 1.12 GHz 800 MHz
3.12 W 3.74 W 10 W 15 W 10 W

12

1024
12 275 411 533 558 2062
16 343 511 638 762 2422
20 410 611 729 923 2682

512
12 315 469 351 506 1405
16 371 553 408 599 1582
20 452 672 487 748 1767

256
12 365 543 225 372 909
16 445 662 275 465 1052
20 570 847 357 620 1251

8

1024
12 207 310 421 452 1730
16 258 386 511 568 2020
20 317 473 606 700 2294

512
12 241 360 276 384 1149
16 371 469 350 511 1409
20 371 552 409 596 1574

256
12 309 461 192 309 794
16 401 662 249 414 973
20 444 663 276 463 1053

This pattern is also present when analyzing the results for the Jetson Xavier NX. However, in this
case, the GPU clearly outperforms the maximum number of FPS achieved by the FPGA for all algorithm
settings. Nevertheless, it should be noticed by the reader that the Jetson Xavier NX represents one of the
latest, most advanced NVIDIA single-board computers whereas the Xilinx Zynq-7020 SoC that mounts
the ZedBoard (i.e., XC7Z020-CLG484) is a mid-range FPGA several technological generations behind the
Jetson Xavier GPU. Despite the fact that there are more powerful FPGA devices currently on the market,
one of the main objectives of this work is to assess the feasibility of the reconfigurable logic technology
for high-performance embedded applications such as HyperLCA under real-file conditions. At the same
time, it is also a goal of this work to explore the minimum requirements of an FPGA-based computing
platform that is able to fulfil the performance demands and constraints of the hyperspectral application
under study. Thus, the selected version of the Xilinx Zynq-7020 SoC meets the demand for all algorithm
configurations, at a lower cost.
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(a) (b)
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Figure 13. Comparison of the speed-up obtained in the compression process, in terms of FPS and the input
parameter BS, reached by a Xilinx Zynq-7020 programmable SoC following the design-flow proposed in
this work versus the GPU-based implementation model described in [29] performed onto some NVIDIA
power-efficient embedded computing devices, such as Jetson Nano, Jetson TX2 and Jetson Xavier NX.
(a) FPS Nbits = 12, CR = 12; (b) FPS Nbits = 12, CR = 16; (c) FPS Nbits = 12, CR = 20.

Going deeper in the analysis of the results, Figure 14 plots the power efficiency for each targeted
device, measured as the FPS achieved divided by the average power budget. The picture shows how the
efficiency varies in relation to the size of the input image blocks (BS). Jetson boards are designed with a
high-efficient Power Management Integrated Circuit that handles voltage regulators, and a power tree to
optimize power efficiency. According to [49–51], the typical power budgets of the selected boards amount
to 10 W, 15 W and 10 W for the Jetson Nano, Jetson TX2 and Jetson Xavier NX modules, respectively.
In the case of the XC7Z020-CLG484 FPGA, the estimated power consumption after Place & Route stage in
Vivado toolchain goes up to 3.74 W at 150 MHz. Based on the trend lines shown in Figure 14, it can be
concluded that the FPGA-based platform is by far more efficient in terms of power consumption that the
Jetson Nano and TX2 NVIDIA boards, for all algorithm configurations. As in the case of the performance
analysis (Figure 13), the power efficiency of the FPGA slightly decreases with higher BS values while
GPU-based implementations present an opposite behavior. As a result, the FPGA-based solution remains
a more power-efficient approach for the smallest image block size (BS = 256) and shows similar figures for
BS = 512 and higher CR. Nevertheless, for BS = 1024, Jetson Xavier NX clearly outperforms the proposed
FPGA-based solution.
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(a) (b)

(c)

Figure 14. Comparison of the energy efficiency in the compression process, in terms of the ratio between
obtained FPS and power consumption and the input parameter BS, reached by a Xilinx Zynq-7020
programmable SoC following the design-flow proposed in this work versus the GPU-based implementation
model described in [29] performed onto some NVIDIA power-efficient embedded computing devices, such
as Jetson Nano, Jetson TX2 and Jetson Xavier NX. (a) FPS Nbits = 12, CR = 12; (b) FPS Nbits = 12, CR = 16;
(c) FPS Nbits = 12, CR = 20.

The reasons that explain this behavior root in the fact that GPU-embedded platforms have been
able to significantly increase their performance while maintaining or even reducing the power demand.
The combination of architectural improvements and better IC manufacturing processes have paved the
way to an scenario where embedded-GPU platforms are gaining ground and can be seen as competitors of
FPGAs concerning power efficiency.

Although the initial FPGA solution has proved to be sufficient, given the real-life requirements of
the targeted application, we have ported the proposed design to a larger FPGA device. The objective is
two-fold. First, to evaluate if it is possible to reach the same level of performance (in terms of FPS) than
that obtained by the Jetson Xavier NX implementation with current FPGA technology. Second, to study
how FPGA power efficiency evolves as the complexity of the design increases, and compare it to the results
obtained by the Jetson Xavier NX.

Thus, a multi-HWacc version of the design was developed using the XC7Z100-FFV1156-1 FPGA, one
of the biggest Xilinx Zynq-7000 SoCs, as the target platform. The new FPGA allows up to 5 instances of
the HyperLCA component working in parallel. The selected baseline scenario is the configuration where
the single-core FPGA design obtained the worst results compared to the Jetson Xavier NX (i.e., BS = 1024
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and Nbits = 8 for all CR values). Synthesis and implementation was carried out by means of Vivado
toolchain using the Flow_AreaOptimized_high and Power_ExploreArea strategies, respectively. As can be
seen in Figure 15a, the performance of the multi-HWacc version grows almost linearly with the number of
instances. There is a loss due to the concurrent access to memory in order to get the hyperspectral frames
and the necessary synchronization of the process, which is the responsibility of the software. The new
multi-core FPGA-based HyperLCA computing platform can reach the same level of performance for the
maximum number of instances. As to the efficiency in terms of energy consumption per frame processed
by the collection of HWaccs, with just three instances the FPGA is comparable to the GPU (above the Jetson
Xavier NX results for CR = 16 and CR = 20) and better for four and five instances of the HWacc.

(a) (b)

Figure 15. Evolution of the performance (a) and energy efficiency (b) of a multi-core version of the
FPGA-based HyperLCA computing platform. Comparison with the GPU-based implementation model
described in [29] performed onto NVIDIA Jetson Xavier NX (Nbits = 8, BS = 1024, using a Xilinx Zynq-7000
XC7Z100-FFV1156-1).

5. Conclusions

The suitability of the HyperLCA algorithm for being executed using integer arithmetic was already
examined in further detail in previous state-of-the-art publications. Nonetheless, in this work we have
contributed to its optimization providing a performance-enhancing alternative that has brought about a
substantial performance improvement along with a significant reduction in hardware resources, especially
aimed at overcoming the scarcity of in-chip memory, one of the weakness of FPGAs.

In this context, the aforementioned modified version of the HyperLCA lossy compressor has been
implemented onto an heterogeneous Zynq-7000 SoC in pursuit of accelerating its performance and thus,
complying with the requirements imposed by a UAV-based sensing platform that mounts a hyperspectral
sensor, which is characterized by a high frame rate. The adopted solution combines modules using VHDL
and synthesized HLS models, bringing to life an efficient dataflow that fulfils the real-life requirements of
the targeted application. On this basis, the designed HWaccs are able to reach frame rates of compressed
hyperspectral image blocks higher than 330 FPS, setting the baseline scenario in 200 FPS, using a small
number of FPGA resources and low power consumption.
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Additionally, we also provide a comprehensive comparison in terms of energy efficiency and
performance between the FPGA-based implementation developed in this work and a state-of-the-art
GPU-based model of the algorithm on three low-power NVIDIA computing boards, namely Jetson
Nano, Jetson TX2 and Jetson Xavier NX. Conclusions drawn from the discussion show that although the
FPGA-based platform is by far more efficient in terms of power consumption than the oldest-generation
NVIDIA boards, such as the Jetson Nano and the Jetson TX2, the newest embedded-GPU platforms,
such as the Jetson Xavier NX, are gaining ground and can be seen as competitors of FPGAs concerning
power efficiency.

On account of that, we have also introduced a multi-HWacc version of the developed FPGA-based
approach in order to analyze its evolution in terms of performance and power consumption when the
number of accelerators increases in a larger FPGA. Results conclude that the new multi-core FPGA-based
version can reach the same level of performance as the most efficient embedded GPU systems. Also,
looking at the energy consumption, FPGA performance per watt is comparable from just three instances of
the HWaccs.

Finally, we would like to conclude that although the work described in this manuscript has been
focused on a UAV-based application, it can be easily extrapolated to other work in the space domain.
In this regard, FPGAs have been established as the mainstream solution for on-board remote-sensing
applications due to their smaller power consumption and above all, the accessibility to radiation-tolerant
FPGAs [6]. That is why the FPGA-based model proposed in this manuscript efficiently implements all
HyperLCA compression stages in the programmable logic (PL) of the SoC, that is the FPGA. Hence, it can
easily be adapted to be performed on other space-grade certified FPGAs.
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Appendix A

Table A1. Evaluation of the results obtained using the FPGA-based solution on a Xilinx Zynq-7020 programmable SoC for hyperspectral images with 180 bands.

Nbits BS CR

Cycles per Block

pmax
(Max Frame Rate)

1 PE 2 PEs 4 PEs 6 PEs 10 PEs 12 PEs
100 MHz 150 MHz 100 MHz 150 MHz 100 MHz 150 MHz 100 MHz 150 MHz 100 MHz 150 MHz 100 MHz 150 MHz

12

1024

12 2,666,775 1,388,085 763,648 563,553 404,613 364,594 1237 56 72 108 131 196 178 266 248 370 275 411
2,093,523 1,088,779 599,742 445,886 323,820 293,10116 47 71 91 137 167 250 225 336 310 463 343 511 9

20 1,711,355 889,312 490,447 367,439 269,887 245,360 758 87 112 168 204 305 273 408 373 555 410 611

512

12 1,145,407 596,547 328,928 244,157 176,829 159,901 1043 65 83 125 152 228 205 307 284 424 314 469
953,703 496,418 273,941 204,570 149,589 135,69116 52 78 100 151 183 273 245 366 336 501 370 552 8

20 761,999 396,125 218,877 165,082 122,367 111,546 669 98 126 189 229 342 304 454 411 612 452 672

256

12 479,335 250,030 138,409 103,597 76,005 69,030 852 78 100 149 181 270 242 361 330 493 364 543
382,863 199,499 110,479 83,400 62,056 56,64916 65 97 125 187 227 339 301 449 405 604 444 661 6

20 286,391 148,931 82,691 63,382 48,200 44,265 487 130 167 251 303 453 397 591 523 778 570 847
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Table A1. Cont.

Nbits BS CR

Cycles per Block

pmax
(Max Frame Rate)

1 PE 2 PEs 4 PEs 6 PEs 10 PEs 12 PEs
100 MHz 150 MHz 100 MHz 150 MHz 100 MHz 150 MHz 100 MHz 150 MHz 100 MHz 150 MHz 100 MHz 150 MHz

8

1024

12 3,622,195 1,886,981 1,036,739 759,669 539,143 483,832 1727 41 53 79 96 144 131 197 186 278 207 310
2,857,859 1,487,981 818,201 602,802 431,461 388,39116 34 52 67 100 122 183 166 248 232 347 258 386 13

20 2,284,607 1,188,572 654,337 485,088 350,730 316,731 1043 65 84 126 153 229 206 309 286 427 317 473

512

12 1,528,815 797,038 438,876 323,247 231,359 208,129 1432 49 62 94 114 170 155 232 217 324 241 360
1,145,407 596,571 328,949 244,100 176,809 159,83416 43 65 83 125 152 227 205 307 284 424 370 469 10

20 953,703 496,495 274,002 204,592 149,566 135,748 852 78 100 151 183 273 245 366 336 501 370 552

256

12 575,808 300,575 166,183 123,677 89,908 81,374 1043 65 83 124 150 225 202 303 279 417 309 460
431,099 224,781 124,409 93,463 68,997 62,85016 57 86 111 166 201 301 268 401 364 543 400 596 7

20 382,863 199,486 110,540 83,520 62,093 56,658 665 97 125 187 227 339 301 448 405 603 444 661
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