
A Dataflow Architecture for Real-Time
Full-Search Block Motion Estimation

blind review

No Institute Given

Abstract. Motion estimation is the cornerstone of the main video com-
pression standards, which are based on the reduction of the temporal
redundancy between consecutive frames. Although the mechanism is sim-
ple, the best method, Full Search, uses a brute-force approach which is
not suited for real-time applications. This work introduces a high perfor-
mance architecture for performing on-the-fly full-search block matching
estimation in FPGA devices, which has been modeled using C++ pro-
gramming language and synthesized with Vivado HLS for a Xilinx ZC706
prototyping board. The architecture is based on a dataflow datapath
and it is configurable, enabling a fast and easy exploration of the solu-
tion space. On-board results achieve a maximum performance of 743fps,
247fps and 110fps for VGA, HD and FHD video resolutions, respectively,
for a typical macroblock size of 16x16 pixels and a search area of ±16
pixels.

Keywords: FPGA, High-Level Synthesis, Motion Estimation, Full Search
Block Matching

1 Introduction

Motion Estimation (ME) explores temporal redundancy of a sequence, which is
inherent in consecutive video frames, and it represents a basis for lossy video
compression. Thus, ME techniques are present in standard video codecs, such
as H.263, H.264, or HEVC, to exploit temporal redundancy in a sequence of
frames. However, the relentless growth in digital video applications and their
continuous resolution improvement make the ME phase a critical one; the total
computing time varies between 60% and 80% depending on the Block Matching
(BM) algorithm selected, which also determines the resulting accuracy reached,
e.g. the Full-Search Block Matching (FSBM) algorithm gets the most accurate
results since it performs all possible comparisons of macroblock, i.e. a group of
NxN pixels.

The FSBM algorithm has the aim to get the best match for a block in the
reference frame. In this sense, the current block is compared with the candidate
blocks of the reference frame. FSBM calculates the Sum-Absolute-Difference
(SAD) value at each possible location inside the search window [1]. Unfortu-
nately, the computational costs of the FSBM algorithm is prohibitive on general



2 blind review

purpose processors, because it is extremely demanding concerning the comput-
ing effort, rendering this technique unsuitable for real-time imaging applications.
Contrarily, FPGA (Field Programmable Gate Array) architecture is well-suitable
for this algorithm because of its parallel nature.

Therefore, increasing the performance of the FSBM algorithm in parallel ar-
chitecture devices, such as FPGAs, can reduce the computational costs as well
as be feasible in real-time solutions. In this work, a high-performance architec-
ture for Full-Search Block-Matching Estimation is introduced, with the following
main contributions.

– A configurable hardware accelerator of the FSBM algorithm for different
video resolution, i.e. VGA, HD and Full HD.

– Reduce the footprint of the proposed solution as low as possible to enable its
deployment on embedded FPGA-based platforms with constraint resource
(i.e. edge/fog computing nodes) or power (i.e. energy harvesting or battery
powered) budgets.

The rest of this paper is organized as follows. In Section 2, the related works
are analyzed. Section 3 describes the architecture and the proposed workflow
for the FSBM implementation. Section 4 discusses the strengths and limitations
of the proposed solution as well as compares the results with the different con-
figurations implemented. Finally, Section 5 draws the main conclusions of this
work.

2 Related work

S. Ghosh et al. in [2] present an FPGA-based solution for the sum-of-absolute-
differences (SAD) operator of the FSBM algorithm, in which the main opti-
mization done is the reduced number of basic arithmetic operations performed.
This optimization results in a the performance as well as reduces the silicon
area. In the same line, H. Loukil et al. describe a VHDL implementation of the
SAD operator in [3]. The optimizations of both works get good results for iso-
lated macroblocks, but the scalability of these solutions do not work fine when a
whole frame is processed. The arrangement pattern of the pixels would require
extra bandwidth to access the memory in the required order.

J. Olivares et al. [4] apply the Online Arithmetic (OLA) that allows to speed
up computation by early termination of the SAD calculation when the candidate
is bigger than the current reference. The accelerator is optimized for area and
is able to process 17.2 VGA frames per second on a Virtex-II with a 425 MHz
clock for 16x16 macroblocks.

Furthermore, 1-D and 2-D Systolic array architectures for FSBM implemen-
tation have been regarded as an optimal solution due to the efficient use of re-
sources, low power budget and their configurability properties in what concerns
the macroblock dimension, the search area and parallelism level [5] [6].

M. Mohammadzadeh et al. present in [7] an array processor written in VHDL
and its optimization to achieve the minimum area occupation and maximum



A Dataflow for Block Motion Estimation 3

operating frequency. It includes control logic blocks to generate memory access
addresses, which makes this work one of the few approaching the whole process
at frame level, together with the proposal presented by Kasturi et al. in [8].
Implementation results are shown for a size of macroblock of 8x8 and different
values for the search area. For the same configuration that the one set in this
work (N = 16 and p = 8), the synthesis results show that the area occupied on a
Vritex-II FPGA is about %11 of the chip and the maximum frame rate is 60 for
CIF resolution and a 191 Mhz clock. It is not possible to project these results
for other video formats.

Nuno et. al [9] validate several optimization strategies to obtain even more
efficient systolic array architectures without sacrificing the quality of the result.
Some of these techniques (i.e. reduced pixel precision) are of interest and its
application to the solution proposed in this work is planned for future improve
versions of the FSBM IP.

3 Full-Search Block Matching implementation on FPGA

For the design of the FSBM architecture, a dataflow approach has been followed,
avoiding, as much as possible, the use of unnecessary intermediate memory stor-
age. The simplicity of the HLS model and the optimization of the computations
adds together to obtain and optimal outcome.

The C++ model defines four stages that operate concurrently (see Figure 1):

– Stage 1: Accommodation of the input streams. On the one hand, the input
reference frames must have their borders extended in order to keep subse-
quent processing logic simple. On the other hand, the input reference frame
must be rearranged in order to deliver the right MB sequence to next stage,
at the right time.

– Stage 2: For each MB of the reference frame, its similarity degree with all
possible MBs within the search region is computed. The similarity function
implemented in this proposal is the Sum of Absolute Differences (SAD).

– Stage 3: Selection of the MB in the reference image with the minimum
value for previously computed SAD costs.

– Stage 4: Copy of the computed motion vector values to external memory.

Listing 1.1 shows the proposed model implemented in C++ to be synthesized
with Vivado HLS tool for a block size of N = 16 and a search area of 8 pixels,
the simplest model since it is only necessary to cache one line of reference mac-
roblocks, and one macroblock from the current frame has to be compared with.
In such code INTERFACE #pragmas are not shown, but all input/output ports
are mapped to AXI-Stream channels. The model has also been fully parameter-
ized by means of #define preprocessor directives, enabling easy adaptation by
only changing the values for the video resolution and macroblock size.

Listing 1.1: HLS model for the FSBM dataflow architecture.



4 blind review

Fig. 1: Proposed dataflow architecture for the FSBM IP.

1 void FSBM(AXI_STREAM& IMG_REF , AXI_STREAM& IMG_CURRENT , MB_OFFSET_T
MOTION_X[V_MB][H_MB], MB_OFFSET_T MOTION_Y[V_MB][H_MB]){

2 ...
3 YUV_IMAGE_T CURRENT;
4 MB_OFFSET_T VX[H_MB];
5 #pragma HLS STREAM variable=VX off
6 MB_X_T MB_X[NPIXELS_IMG/PIXELS_WORD ];
7 #pragma HLS STREAM variable=MB_X depth=2 dim=1
8

9 #pragma HLS dataflow
10 // Stage 0: Xilinx HLS Video data types
11 hls:: AXIvideo2Mat(IMG_REF , REFERENCE);
12 hls:: AXIvideo2Mat(IMG_CURRENT , CURRENT);
13 // Stage 1
14 extendBorders(CURRENT ,CURRENT_EB);
15 orderMB(REFERENCE ,MB_ORDERED);
16 // Stage 2
17 SAD(CURRENT_EB ,MB_ORDERED ,COSTS_SAD ,MB_X ,MB_Y ,VX_OFF ,VY_OFF);
18 // Stage 3
19 minCost(COSTS_SAD ,VX_OFF ,VY_OFF ,MB_X ,MB_Y ,VX ,VY);
20 // Stage 4
21 copy2Mem(VX,VY ,MOTION_X ,MOTION_Y);
22 return;
23 }

All stages communicate by means of streams, implemented as FIFO channels,
avoiding the need of large intermediate ping-pong buffers that would require of
BRAM resources. The only exception to this rule are the two ping-pong buffer
channels between Stage 3 and Stage 4 (VX and VY). These memories are used



A Dataflow for Block Motion Estimation 5

to store the values of the motion vectors computed so far in Stage 3. Thus, for
the video resolutions and a macroblock size of 16x16 (the one used in this work
during the experimental validation of the FSBM core), the dimensions of the
motion vector matrices are 40x30 (VGA), 80x45 (HD) and 120x68 (FHD) 4-bit
elements. The BRAMs used by Vivado HLS to map the model variables are
doubled since the channel implements ping-pong synchronization. In addition,
an initialization stage has been included to convert the source data into Xilinx
HLS video data type (lines 10-12 of Listing 1.1).

In order to keep a sensible use of FPGA resources, such as BRAMs, the depth
of the FIFO channels are set to the smallest possible value due to the balanced
design of the stages. The width and depth of some of the channels depend on
the width of the AXI-Stream interface to external memory and the resolution of
the images.

Concerning the internal demand for resources by the individual modules, the
focus is put in avoiding the need for unnecessary intermediate storage. The ma-
jority of such demand comes from the orderMB and SAD functions that implement
two line buffers of size N and, for the latter, an additional buffer that holds one,
three or five rows of macroblocks, depending on the search area configures (i.e.
8, 16 or 32 pixels).

Next, a complete breakdown of the dataflow architecture is provided so as to
give the reader with details about the functioning of each stage, the synchroniza-
tion mechanism between steps and the strategy to achieve the aimed reduction
of resources in the final implementation of the model.

3.1 Stage 1: Input Stream Accommodation

This step is responsible for the preparation of the video frames before the com-
putation of the SAD values. In addition to the use of built-in Xilinx functions
(i.e. hls::AXIVideo2Mat) so as to be compliant with the HLS utility video data
types (lines 11 and 12 of Listing 1.1), two additional actions are carried out.

The general operation of the FSBM algorithm consists in finding the most
likely position of a reference macroblock in the current frame within a delimited
search area. Macroblocks placed at the borders of a frame are a special case
since there are search positions that might not be valid because they are out
of the frame area. This situation can be detected by checking the limits before
proceeding to compute the cost function.

However, in order to ease the work of the HLS tool, the borders of the input
reference frame are extended. This way, the implementation of the SAD function
becomes a perfect loop, leading to an optimal pipeline architecture. This is the
task of the extendBorders function which replicates the pixels placed at the
borders of the current frame and fills out the empty search area. To this end, only
a buffer of the size of a line is needed to temporally save the pixels of the first and
last rows. The output of the extendBorders function is a stream (CURRENT EB)
of 32-bit words, each one packing four 8-bit luminance components.

Meanwhile, running in parallel to the adaptation of the current frame, the
orderMB function re-arranges the pixels of the reference frame and feeds the sec-



6 blind review

ond stage with an ordered flow of MBs. To this end, a line buffering approach is
implemented which optimizes the number of BRAMs needed. Figure 2 represents
the architecture of the line buffering approach used by the FSBM component, in
which the dataflow follows a pull-push model. Firstly, the pixels of the concerned
column/s are shifted upwards at each iteration, so as to leave free space. At the
same time, those pixel/s are copied to the lastc array which holds the values
for the current column under processing. Secondly, the new pixel, or group of
pixels (depending on the width of the AXI-S interface), are received and stored.
Finally, the window is shifted to the right and lastc is inserted. The content
of the window is processed by the user logic anytime it is necessary, which is
usually modelled by a guarded condition that is evaluated in each iteration.

Fig. 2: Line buffering approach used in Stages 1 & 2.

The user logic in orderMB packs the 16x16 8-bit pixels of the window in one
2048-bit word. This only happens when row and col loop indexes are multiple
of the macroblock size (lower-right corner). Therefore, the packed word actually
represents the content of a macroblock in the reference frame.

3.2 Stage 2: SAD computation

In this stage, each macroblock of the reference frame is compared with all possible
adjacent macroblocks within a delimited search area in the current frame. The
correspondence of the reference macroblock in the current frame is established
by selecting the current macroblock with the minimum cost (similarity) function.
In this implementation, the Sum of Absolute Differences (SAD) is used.



A Dataflow for Block Motion Estimation 7

The challenge is to perform all SAD computations as the pixels of the current
(border-extended) frame are received. To this end, the implementation of the SAD
function uses a similar line buffer structure than the one used in the orderMB

function in Stage 1. However, it is introduced a new challenge derived from the
need of synchronized the stream of the current frame with extended borders and
the ordered list of MBs of the reference frame.

Figure 3 sketches the synchronization mechanism and the macroblock con-
sumption pattern. The picture represents a simplified version of the extended
current and reference (light blue background) frames which are overlapped. In
this example, each cell represents a 8x8 pixel sub-block and this representation
assumes a macroblock size of 16x16 pixels and a search area of ±8 pixels. The
reference macroblocks are consumed only at the instants represented as black
diamonds, filling the MB buffer which has a size equals to one row of macroblocks
(steps a to d) in Figure 3).

Fig. 3: Reference macroblock consumption pattern and SAD computing areas.

The SAD cost values for each reference macroblock are computed in two
phases; upper half (steps e to h) and lower half (steps i to l). After the final-
ization of the second phase, the macroblock is replaced by a new one since it
is not needed anymore. The dark blue cells represent, for the active reference
macroblock (highlighted as a black box), the actual search area processed. This
mechanism is also followed for values ±16 and ±32 pixels of the seach area.
The only difference is that it must be stored three and five lines of reference
macroblocks, respectively.



8 blind review

Furthermore, this stage also obtains the SAD cost by the costSAD function,
which is responsible for the actual computation of the macroblock similarity
metric. This function must accept a new window of pixels every clock cycle in
order to keep the pace set by the dataflow path. Since CURRENT EB stream has
a data width of 32-bits, at each iteration of the pipeline four new luminance
components are accepted. This means that, at each iteration, four SAD cost
values have to be computed; otherwise, three columns of pixels will be lost due
to the shifting of the processing window.

Fig. 4: Parallel computation of SAD cost values for the extended processing
window.

Figure 4 represents this functionality. The processing window is extended
one word (last coloured column) to avoid the above mentioned loss of pixels. In
HLS, the function costSAD (see Listing 1.2) implements this task. Since both
the processing window and the reference macroblock are mapped to registers,
all read operation are completed in one clock cycle. Then, for each SAD cost
being computed, the absolute differences for each group of pixels (4 in total) are
added (line 17 of Listing 1.2). The automatic expression balancing performed by
Vivado HLS produces the minimum latency for the tree of additions.

Listing 1.2: SAD cost computation.

1 typedef ap_uint <2048> MBreg_t; // For 16 x16 MB size
2

3 ap_uint <2> costSAD(pixel_t MB_curr[W_SIZE], MBreg_t MB_ref , COST_SAD_T *
cost , MB_OFFSET_T offset){

4 #pragma HLS INLINE off
5 ap_uint <2> sad_select0 , sad_select1 , sad_select;
6

7 coste_MAD_i:for(i=0; i<MB_SIZE; i++){
8 coste_MAD_j: for(j=0; j<MB_SIZE /4; j++) {
9 p1R = MB_ref ((i*MB_SIZE+j*4) *8+7,(i*MB_SIZE+j*4)*8);

10 p2R = MB_ref ((i*MB_SIZE+j*4) *8+15 ,(i*MB_SIZE+j*4) *8+8);
11 //p3R , p4R
12



A Dataflow for Block Motion Estimation 9

13 p1C = MB_curr[i*(( MB_SIZE /4) +1)+j](7 ,0);
14 p2C = MB_curr[i*(( MB_SIZE /4) +1)+j](15 ,8);
15 // p3C , p4C , p5C , p6C , p7C
16

17 SAD_0 += abs(p1R -p1C)+abs(p2-p2C)+abs(p3R -p3C)+abs(p4R -p4C);
18 //SAD_1 , SAD_2 , SAD_3
19 }
20 }
21 //1st Cycle
22 minSAD0 = SAD_0;
23 sad_select0 = 0;
24

25 if (SAD_1 < SAD_0)
26 minSAD0 = SAD_1;
27 sad_select0 = 1;
28 } else if (SAD_0 == SAD_1 {
29 if (offset < MB_SIZE /2) {
30 minSAD0 = SAD_1;
31 sad_select0 = 1;
32 }
33 }
34 // Idem for SAD_2 and SAD_3
35 //2nd Cycle
36 *costSAD = minSAD0;
37 sad_select = sad_select0;
38

39 if (minSAD1 < minSAD0) {
40 *costSAD = minSAD1;
41 sad_select = sad_select1;
42 } else if (minSAD0 == minSAD1){
43 if (offset < MB_SIZE /2) {
44 *costSAD = minSAD1;
45 sad_select = sad_select1;
46 }
47 }
48 return mb_select;
49 }

The offset parameter provided to costSAD function represents the relative
position of the reference macroblock within the search area. This parameter is
used, in case of equality of the SAD values, to select the macroblock closer to
the center (lines 25-47 of Listing 1.2). This design decision has been made based
on the high frame rate supported by the FSBM IP and the nature of the video
sequences (global motion) that would lead to small macroblock displacements
between frames. As a result, the minimum SAD value is selected and its index
(sad select) is returned. Back to the parent SAD module, the SAD selection
variable adjusts the X component of the motion vector (lines 29 and 33 of List-
ing 1.2).

Depending on the search area parameter, the number of instances of the
costSAD function takes a value of 1, 9 or 25 in the architecture.

3.3 Stage 3: Selection of the minimum SAD cost

This stage receives the output of the previous SAD computation phase. For a
reference macroblock (MB X, MB Y), a new intermediate cost (COST SAD) needs
to be processed and check whether it is the minimum for that macroblock. If
so, the current value of the motion vector is updated with the VX OFFSET and
VY OFFSET components.



10 blind review

The minCost function initializes the MIN COSTS matrix with the maximum
possible value for SAD cost. Then, it starts the processing comparing the cur-
rent minimum with the value took out off the input stream. In case that both
SAD costs are equal, the one belonging to the current macroblock closest to
the center of the search area is selected (lines 23-31). A ROM is used to stored
the pre-computed distance values in order to avoid higher latencies due to extra
arithmetic operations.

As in the previous stages, only a well-known subset of the positions in VX

and VY arrays are accessed for a macroblock in the current frame given a specific
search area. Therefore, the bottleneck that would represent the minCost func-
tion when several instances of the costSAD functions are created, is solved by
maintaining in registers only those positions that could be potentially affected
by the arrival of a new minimum.

By the end of this phase, the VX and VY ping-pong buffer channels have the
final values of the motion vectors for the pair of frames under processing. The
copy2Mem function (Stage 4) only reads these memories and packs up to four
components (depending on the specified width of the AXI-Stream interface) in
a single memory word.

4 Experimental results

The main design goal of the proposed FPGA-based implementation of the FSBM
algorithm is to perform the computation of the motion vectors for a sequence
of frames with the maximum throughput, allowing on-the-fly analysis of the
video flow directly from the input interface. To this end, a prototype of a video
processing platform has been developed on a Xilinx ZC706 board see Figure 5)
so the actual performance of the proposed architecture can be measured.

The video stream is captured in YUV 4:2:2 (16 bit/pixel) format by a Digilent
FMC-HDMI board and then stored in the DDR memory by a Video DMA
component (VDMA0). Two Video DMA cores, VDMA0 and VDMA1, feed the
FSBM component with the right pair of frames to be processed at each step,
whilst the output of the FSBM, i.e. motion vectors, is stored in the DDR through
the second Video DMA component (VDMA1).

VDMA synchronization is achieved by a combination of hardware and soft-
ware mechanisms. On the hardware side, a Dynamic approach is followed [10],
with VDMA0 playing the role of the master and VDMA1 the role of slave.
VDMA0 singals VDMA1 when a new frame has just been written in memory
so VDMA1 does not step on frames that have not been processed yet. On the
software side, a circular framebuffer is set, with VDMA0 pointing to the frame
labeled as current and VDMA1 pointing to the one labeled as reference.

The FSBM core has been developed in C++ and then synthesized, packed
and deployed using the Vivado 2019.2 toolchain provided by Xilinx. The high-
level model is fully parameterized, allowing the possibility of varying the video
resolution (VGA, High Definition, and Full HD), and the width of the AXI-
Stream interfaces (16 or 32 bits) to access the memory where the frames are



A Dataflow for Block Motion Estimation 11

Fig. 5: Video processing platform developed to test the FSBM IP.

stored. Also, the FSBM core can instantiate three versions of the costSAD func-
tion, which perform 1, 2 or 4 (see Figure 4 in Section 3.2) macroblock com-
parisons over the same window. The version of the core used in the prototype
analyzed in this section has fixed the size of the macroblock to N = 16 and the
search area parameter to ±16 and ±32.

Table 1: Nominal frame rate (ZC706 board, T=8.69ns±2.23%). Best configura-
tion: 32-bit AXI-Stream interface and 4-pixel costSAD function.

SEARCH AREA

INPUT VIDEO 8 16 32

VGA 965 743 371

HD 322 247 124

FHD 143 110 55

Regarding the performance achieved by our design, Table 1 shows the nomi-
nal frames per second (fps) for the most performing configurations. That is, the
use of a 32-bit AXI-Stream bus and the version of the costSAD function that
process four new pixels in parallel. Synthesis results prompted a slight variation
in the clock period for the proposed FSBM IP as the model parameters where
modified. Thus, it is safe to say that the average period (8.69ns ±0.19ns) is con-
stantThe nominal working frequency ('115 Mhz) is enough to perform real-time
processing of a 60Hz video stream for VGA and HD resolutions, with a com-
bination of IP parameters that ensures the minimum occupancy of the FPGA.



12 blind review

For Full HD resolutions, the core cannot meet the pixel time (i.e. 148.5Mhz
for 60Mhz), so the designer might overcome this limitation by selecting a more
aggressive combination of parameters to meet real-time requirements. This ap-
proach also applies to contexts where the performance is the principal driving
force in the design.

The comparison with other works is not straightforward. Whilst our solution
comprises the whole FSBM algorithm, most of the related proposals focus only
on the implementation of the SAD operand. A comprehensive approach intro-
duces additional challenges that are not taken into account such as the efficient
management of the traffic to/from memory through reutilization of data.

Table 2: Summary of other FPGA-based implementations of the FSBM algo-
rithm and comparison with the proposed architecture.

Work Platform
Clock
(MHz)

MB size Search Area Resolution FPS

[4] Xilinx Spartan3 366.8 16x16 ±16 HD 13.62

[3] Altera Stratix 103.8 16x16 ±16 HD 5.15

[6] Xilinx XCV3200E 76.1 16x16 ±16 HD 20.98

[11] Altera Flex20KE 197 16x16 ±16 HD 4.91

[2] Xilinx Virtex 4 221.2 16x16 ±16 HD 55.33

[7] Xilinx Virtex 2 191 16x16 ±16 HD 2.09

[12]
Xilinx Virtex 5 LX330T

125
8x8,16x6,
32x32,64x64

±64 FHD
26.9

Virtex 6 LX240T 53.6

[13] Xilinx Virtex 5 269.3 16x16 ±32 FHD
31
30

Ours Xilinx ZCU706 (Kintex-7) 115 16x16
±16

HD 247
FHD 110

±32
HD 124

FHD 55

Table 2 lists information on certain implementation results of other FPGA-
based implementations of the FSBM algorithm. The use of RTL as the developing
language is common in all them whereas in this proposal, HLS technology has
proved to be competitive in terms of performance. No developing and testing
times have been reported in any of these works, so it is not possible to establish
a comparison framework in this regard, which is one the major pluses of HLS
tools.

The approach presented in this article surpasses the performance levels re-
ported by those works with the same configuration (i.e. macroblock size, search
area and resolution of the video), despite running at a lower clock frequency.
Also, the reader should notice that our approach also deals with the burden of
moving efficiently the frames from/to the DDR memory.



A Dataflow for Block Motion Estimation 13

Only D’huys et al. in [12] faced the implementation of a global solution, where
it is also employed a macroblock reordering strategy to optimize the computation
of the SAD costs. The comparison with this work is not direct since the solution is
intended for a variable-size macroblock problem ranging from N = 8 to N = 64.
Also, the search area is wider so the computational load increases significantly.
Although current results look promising, it would be necessary revisiting the
architecture to adapt it to this more challenging scenario.

Nevertheless, the comparison with [13] is more direct since the size of the
block remains the same.

Table 3: Resource occupation after place & route (XC7Z045-FFG900-2 ZynQ-
SoC). Best configuration: 32-bit AXI-Stream interface and 4-pixel costSAD func-
tion.

Search Area LUT FF 18 Kbit BRAM

VGA

8 30720 (14,05%) 22745 (5,20%) 48 (4,40%)
16 64304 (29,42%) 52145 (11,93%) 58 (5,32%)
32 131472 (60,14%) 110945 (25,38%) 68 (6,24%)

HD

8 30680 (14,03%) 24176 (5,53%) 53 (4,86%)
16 64264 (29,40%) 53576 (12,25%) 71 (6,51%)
32 131432 (60,12%) 112376 (25,7%) 90 (8,26%)

FHD

8 31548 (14,43%) 26880 (6,15%) 60 (5,50%)
16 65132 (29,8%) 56280 (12,87%) 89 (8,17%)
32 132300 (60,52%) 115080 (26,32%) 117 (10,73%)

The impact on resource utilization, for different variations of the search area,
is summarized in Table 3, where actual synthesis results (after place & poute)
are shown. Firstly, the demand for resources remains stable despite the fact
of dealing with higher resolutions of the video feed. This is specially true for
LUTs and FFs. However, such demand slightly sees a moderate increment for
BRAM resources. Secondly, the wider the search area the higher the increment
in resource usage, specially in LUTs and BRAMs, due to the need to cache a
greater number of macroblocks for concurrent costSAD computation.

5 Conclusions

In this work, a high performance implementation of the full search block match-
ing motion estimation algorithm for real-time video processing has been pre-
sented. The proposed architecture is based on a dataflow and has been modeled



14 blind review

using Vivado HLS. The model is parameterized, enabling the engineer to easily
explore the solution space and select the combination of variables (video reso-
lution, width of memory interface, number of parallel SAD computations) that
best serve the design requirements.

A video processing platform has been also prototyped and synthesized on
a mid-range, cost-optimized Xilinx XC7Z020-CLG484-1 ZynQ-SoC in order to
perform actual measurements of the performance of the FSBM core, and verify
its functioning. The core runs at 115 Mhz which is enough to cope with VGA
and HD 60Hz video timings with the minimum usage of resources. Real-time Full
HD video resolutions can also be processed by means of increasing the memory
bandwidth and parallel SAD cost computations, reaching a maximum of 110 fps.

Several optimizations and potential improvements are devised for future ver-
sions of the component. The reduction of the LUT resources has the highest
priority since represents 60% of the total available. Also, alternative versions of
the cost function will be explored, which might help to the rationalization of
the FPGA resources (e.g. implementing the Mean of Absolute Differences would
reduces the number of bits necessary to represent the cost), and variations on
the technique to extend the borders of the current frame.

Acknowledgment

References

1. L.C. Manikandan, S.A.H. Nair, K.S., Selvakumar, R.: Efficient and configurable
full-search block-matching processors. Cluster Computing 22(5) (Sep 2019) 11773–
11780

2. Ghosh, S., Saha, A.: Speed-area optimized fpga implementation for full search
block matching. In: 2007 25th International Conference on Computer Design.
(Oct 2007) 13–18

3. Loukil, H., Ghozzi, F., Samet, A., Ben Ayed, M.A., Masmoudi, N.: Hardware
implementation of block matching algorithm with fpga technology. In: Proceed-
ings. The 16th International Conference on Microelectronics, 2004. ICM 2004. (Dec
2004) 542–546

4. Olivares, J., Hormigo, J., Villalba, J., Benavides, I., Zapata, E.: Sad computation
based on online arithmetic for motion estimation. Microprocessors and Microsys-
tems 30(5) (2006) 250 – 258

5. Ryszko, A., Wiatr, K.: An assessment of fpga suitability for implementation of
real-time motion estimation. In: Proceedings Euromicro Symposium on Digital
Systems Design. (Sep. 2001) 364–367

6. Roma, N., Sousa, L.: Efficient and configurable full-search block-matching proces-
sors. IEEE Transactions on Circuits and Systems for Video Technology 12(12)
(Dec 2002) 1160–1167

7. Mohammadzadeh, M., Eshghi, M., Azadfar, M.M.: Parameterizable implementa-
tion of full search block matching algorithm using fpga for real-time applications.
In: Proceedings of the Fifth IEEE International Caracas Conference on Devices,
Circuits and Systems, 2004. Volume 1. (Nov 2004) 200–203



A Dataflow for Block Motion Estimation 15

8. Rangan, K., Reddy, M., Reddy, V.: A fpga-based architecture for block matching
motion estimation algorithm. In: IEEE TENCON 2005. Volume 2007. (11 2005)
1–5

9. Roma, N., Dias, T., Sousa, L.: Customisable core-based architectures for real-
time motion estimation on fpgas. In Y. K. Cheung, P., Constantinides, G.A., eds.:
Field Programmable Logic and Application, Berlin, Heidelberg, Springer Berlin
Heidelberg (2003) 745–754

10. Inc., X.: Xilinx axi video direct memory access v6.2 product guide (pg020). (2016)
39

11. Wong, S., Vassiliadis, S., Cotofana, S.: A sum of absolute differences implementa-
tion in fpga hardware. In: Proceedings. 28th Euromicro Conference. (2002) 183–188

12. D’huys, T., Momcilovic, S., Pratas, F., Sousa, L.: Reconfigurable data flow engine
for hevc motion estimation. In: 2014 IEEE International Conference on Image
Processing (ICIP). (2014) 1223–1227

13. Asano, S., Shun, Z.Z., Maruyama, T.: An fpga implementation of full-search vari-
able block size motion estimation. In: 2010 International Conference on Field-
Programmable Technology. (2010) 399–402


	A Dataflow Architecture for Real-Time Full-Search Block Motion Estimation 

