
AN FPGA-BASED IMPLEMENTATION OF A HYPERSPECTRAL ANOMALY DETECTION
ALGORITHM FOR REAL-TIME APPLICATIONS

1.Marı́a Dı́az, 3. Raúl Guerra, 5.Sebastián López

Institute for Applied Microelectronics (IUMA)
University of Las Palmas de Gran Canaria
35001 Las Palmas de Gran Canaria, Spain

2. Julián Caba, 4. Jesús Barba

School of Computer Science
University of Castilla-La Mancha

13071 Ciudad Real, Spain

ABSTRACT
Remote sensing has gained relevance in the last years, mainly
due to the emergence of UAVs carrying airborne imagery sen-
sors. In this regard, the on-board data processing for on-the-
fly making-decision applications is also gaining momentum.
Nevertheless, these flight vehicles are still limited in terms of
power budget and computational capacity, which hampers the
handling of the hyperspectral data. Consequently, there is an
emerging trend towards the development of more hardware-
friendly algorithms suitable for an efficient implementation in
parallel computing devices. In this sense, the LbL-FAD algo-
rithm arose in response to the lack of causal anomaly detectors
that could be easily integrated in push-broom-based acquisi-
tion systems. In this work, we have analysed the feasibility of
the performance and power needs of the LbL-FAD algorithm in
a mid-range re-configurable FPGA-SoC such as the XC7Z020
chip. Concretely, a highly optimized FPGA accelerator of the
LbL-FAD method has been described for the line-by-line de-
tection of anomalous spectra.

Index Terms— FPGAs, hyperspectral imaging, anomaly
detection, line-by-line performance, real-time, High-Level
Synthesis, low-power.

1. INTRODUCTION

Although the hyperspectral technology has been around for
quite some time, it has received increasing attention in the
last years from the scientific and industry sectors. Its expan-
sion and growing recognition have been largely propelled by
the emergence of compact-size aerial platforms, such as Un-
manned Aerial Vehicles (UAVs) and, new space-borne mis-
sions. Nevertheless, these aerial vehicles are still limited in
terms of computational capacities, power budget and data stor-
age.

Consequently, on-Earth processing has been the main-
stream solution for the hyperspectral data handling. In this

MINECO of the Spanish Government (PLATINO project, no. TEC2017-
86722-C4-1-R, subprojects 1 and 4), the ACIISI of the “Gobierno de
Canarias“ and the European Social Fund (FSE) (POC 2014-2020, Eje 3 Tema
Prioritario 74 (85%)) and the Regional Government of Castilla-La Mancha
(SymbIoT project, no. SBPLY-17-180501-000334).

regard, images sensed by airborne imagery sensors are tra-
ditionally downloaded to the ground segment for being off-
line processed on supercomputing systems. Nonetheless, the
ever-growing acquisition data rates of the latest-generation
sensors and the bottleneck that represents the high data vol-
ume transmission could jeopardize the real-time response of
time-sensitive applications. Accordingly, the on-board pro-
cessing has become established as a potential solution for
these scenarios.

Against this backdrop, it is needed in the literature new
algorithmic approaches that take into account the constraints
imposed by devices with limitations, as to the available re-
sources and power budget, from the earliest stage of develop-
ment. Additionally, the causality imposed by real-time appli-
cations based on push-broom/whisk-broom scanners must be
also met through the definition of non-global algorithms ca-
pable of independently processing blocks of image pixels. In
turn, this prevents the storing and management of large data
volumes, thereby reducing the computing resources and speed-
ing up the execution process.

In the field of anomaly detection, the Line-by-Line Fast
Anomaly Detector for Hyperspectral Imagery (LbL-FAD) [1]
emerged to resolve the aforementioned requirements, paving
the way for real-time detection performance. The LbL-FAD
algorithm is a subspace-based anomaly detector that employs
an orthogonal projection strategy for estimating the orthogo-
nal subspace spanned by the background distribution where
anomalous entities are better detectable. For doing so, blocks
of image pixels are independently processed ruling out any
spatial alignment restriction. In this work, we have further ana-
lyzed the performance of the FPGAs for the real-time discrim-
ination of rare spectra employing the LbL-FAD algorithm in
a high data-rate scenario characterized by a push-broom scan-
ner mounted in a UAV. In particular, we have implemented the
LbL-FAD in a Xilinx Zynq-7000 programmable System on
Chip (SoC). This SoC can be found in low-cost, low-weight
and compact-size development boards, which makes it an in-
teresting low-cost alternative for UAVs at the expense of less
computing resources than other costly commercial products.
However, as it is shown in Section 4, these are not limiting fac-
tors to achieve high-performance results due to the exploitation



of parallelism at different levels.

2. THE LBL-FAD ALGORITHM

The LbL-FAD algorithm addresses the anomaly detection is-
sue in four main stages:

1. Line-by-line extraction of the most representative back-
ground spectra:

The LbL-FAD algorithm firstly estimates the orthogonal
subspace that better depicts the background distribution. For
doing so, the p most representative pixels within the first nf
sensed hyperspectral frames, E* = [E1, ...,Enf

], are extracted
using an unmixing-like strategy.

2. Estimation of the background distribution:
Nonetheless, E* comprises several alike spectra since the

hyperspectral frames are processed independently with the
methodology followed by the LbL-FAD algorithm. Conse-
quently, the most dissimilar pixels within E* are selected in
this stage to obtain the subspace spanned by the background.

3. Line-by-line anomaly detection:
Once the background is modelled, the anomaly detection

is performed on the new received hyperspectral frames. To
this end, the orthogonal projection to the subspace spanned by
the background distribution is computed for each image pixel.
This is because an anomalous pixel is supposed to be poorly
represented by the background pattern. Therefore, an abnor-
mal spectrum should have a high enough projection onto the
subspace not covered by the background, which makes easily
the detection of abnormal spectra.

4. Line-by-line binary map generation:
Unlike other state-of-the-art anomaly detectors, the LbL-

FAD outputs a line-by-line binary map where anomalous pix-
els are segmented from the background.

For computing the whole detection process, the LbL-FAD
algorithm is based on a set of core operations that performs the
well-known Gram-Schmidt orthogonalization method. They
are collected in the pseudo code displayed in Algorithm 1 and
independently applied to a block of BS hyperspectral pixels,
Mk. These operations, in the way that they are described in
Algorithm 1, are performed in the Stage 1 and Stage 2 for the
estimation of the background distribution.

1- Average pixel calculation. Firstly, the average pixel, µ̂,
of the input image block, Mk, is calculated (Line 1).

2- Centralization. Then, Mk is centralized subtracting µ̂
from each image pixel, obtaining the centralized version of the
input image, C (Line 2).

Afterwards, the p most representative pixels within Mk are
extracted from Lines 3 to 18 of Algorithm 1. For doing so,
the following operations are repeated until the stop condition
shown in Line 8 of Algorithm 1 is fulfilled.

3- Brightness Calculation. The selected pixels are those
with the highest dot product with itself in each iteration, also
referred as to brightness of a pixel (Lines 4 to 6). In this sense,
en represents the selected pixel within the original image, Mk

Algorithm 1 Set of core operations

Inputs: Mk = [r1, r2, ..., rBS ], α
Outputs: E = [e1, e2, ..., ep] {Characteristic pixels}; µ̂ {Average Pixel};
Q = [q1, q2, ..., qp] {Orthogonal vectors}; U = [u1, u2, ..., up] {Orthonormal
vectors}; τ {Threshold}
Algorithm:

1: Centroid or average pixel: µ̂;
2: Centralization: C = Mk − µ̂;
3: while exit = 0 do
4: for j = 1 toBS do
5: Brightness: bj = c′j · cj ;
6: end for
7: Maximum Brightness: jmax = argmax(bj );

8: if
bjmax

(rjmax
−µ̂)′·(rjmax

−µ̂)
· 100 < α then

9: Stop Condition: exit = 1
10: else
11: Extracted pixels: en = rjmax ;
12: qn = cjmax ;
13: un = qn/bjmax ;
14: Projection: vn = u′n · C;
15: Subtraction: C = C− qn · vn;
16: τ = bjmax
17: end if
18: end while

(Line 11), qn is its counterpart in C (Line 12) and un is the
normalized version of qn (Line 13).

4- Projection. Then, all vectors within C are projected
onto un, obtaining the projection vector, vn (Line 14).

5- Subtraction. To finish, the spectral information within
C that cannot be represented by the selected pixel in the actual
iteration, and that in consequence is orthogonal to it, is retained
in C for the next iteration (Line 15). For this reason, pixels
within Q and U are orthogonal with each other.

Algorithm 2 The LbL-FAD algorithm.

Inputs: HI = [M1,M2, ...,M nr·nc
BS

], nf , α

Outputs: AD = [x11, x12, ..., xkj ]
Algorithm:
Stage 1:

1: for k = 1 to nf do
2: Ek = Algorithm 1(Mk, α)
3: E* = [E*,Ek];
4: end for

Stage 2:
5: [µ̂b,Q,U, τ ] = Algorithm 1(E*, α)

Stage 3: Applied to each new received frame, Mk , k > nf

6: for j = 1 toBS do
7: Centralization: cj = rj − µ̂b

8: for n = 1 to p do
9: Projection: v = U′n · cj

10: Subtraction: cj = cj − Qn · v
11: end for
12: Brightness AD: dj = c′j · cj
13: Stage 4:
14: if dj ≤ 1.5 · τ then (xkj = 0)
15: else(xkj = 1)
16: end if
17: end for

The aforementioned set of core operations is employed for
extracting the most representative pixels within each image
block, Mk and consequently, for generating the matrix E* in
Stage 1, as it can be seen from Lines 1 to 4 in Algorithm 2.
Then, E* feeds this set of core operations to obtain the back-
ground subspace comprised of orthogonal vectors, Q and U,
in the Stage 2 (see Line 5 of Algorithm 2). The definition of



Fig. 1. Overview of the LbL-FAD hardware accelerator

these orthogonal subspace prevents to implicitly compute the
orthogonal projection matrix, P = I − W(W′W)−1W′, for
the subsequent anomaly detection, which is a very computa-
tionally demanding task. Additionally, C retains the spectral
information lost if the background is reconstructed using the
p reference vectors selected in Stage 2. On this basis, the re-
maining maximum brightness in C, τ = bjmax (see Line 16
of Algorithm 1), could be potentially used as a benchmark to
identify anomalous pixels in Stage 4.

For the detection and discrimination of the anomalous pix-
els performed in Stages 3 and 4, the aforementioned set of core
operations is also used but executed in a different order. In
this regard, the projection separation statistical, dj (Line 12
of Algorithm 2), in overall calculates the brightness of the or-
thogonal component of each image pixel, cj , to the subspace
spanned by the background distribution and represented by Q
and U. Accordingly, the Gram-Schmidt orthogonalization pro-
cess (Projection and Subtraction operations) may be used for
calculating the remaining spectral information of each image
pixel, dj , which is in fact orthogonal to the space spanned by
the background samples (Lines 8 to 12 of Algorithm 2). Fi-
nally, if dj is higher than 1.5 times τ , this pixel is marked as
an anomaly (Lines 14 to 16 of Algorithm 2).

3. FPGA IMPLEMENTATION OF THE LBL-FAD

The implementation of the FPGA-based hardware accelerator
of the LbL-FAD algorithm has been carried out by using a
combination of HLS (High-Level Synthesis) generated mod-
ules and custom glue logic in VHDL. HLS technology [2]
has been used to synthesize the RTL (Register Transfer Lan-
guage) code corresponding to the components that instantiate
the functionality of the before mentioned core operators (see

blocks and sub-blocks with white and light blue background in
Figure 1). RTL models are the entry point to the implementa-
tion tools that are in charge of the generation of the bitstream,
the programming file that configures the FPGA fabric to be-
have as it is described by the RTL. However, RTL models are
low-level, time-consuming to write and verify, which leads to
error-prone and lengthy development cycles. Thus, HLS tools
are key to rise productivity of such a kind of developments
since they are able to automatically generate RTL models out
of a specification of the functionality using C programming
language. Verification time is also sped up by a co-simulation
process, where the RTL code is exercised with a set of stimuli
generated by the test bench function written in C. HLS frame-
works provide the developer with the necessary mechanisms
to generate the bridging infrastructure (usually using a system-
level modeling language such as SystemC) that fosters the re-
utilization of the higher-level testing environment, avoiding the
need to rewrite it with the consequent saving in time and effort.

Once the set of core operators (plus the Stop Condition)
modules are obtained, the orchestration of all of them is still
pending. The proposed architecture of the accelerator aims to
make the most of the inherent parallelism of the LbL-FAD al-
gorithm. For such end, the different modules should be able to
work concurrently in a perfectly synchronized dataflow. De-
spite the fact that the HLS tools are able to capture dataflow
and other concurrent data processing semantics, there are lim-
itations regarding the actual architectures they are able to gen-
erate. For example, it is not possible to model in HLS an it-
erative dataflow model where the outputs of one iteration feed
the input of the next one. Instead, a classic pipeline architec-
ture is inferred with inter-loop data dependencies that is more
inefficient.

To overcome this issue, tailor-made VHDL modules (see



blocks with light purple background in Figure 1) have been
used to implement an optimized dataflow. The VHDL logic is
responsible for connecting the inputs and outputs of the HLS-
synthesized blocks by means of a network of selectors and
buffers (i.e. FIFO and BRAM components that are gener-
ated using vendor-specific tools) that is governed by a sched-
uler. The scheduler is implemented as a synchronous FSM (Fi-
nite State Machine) that selectively activates/deactivates HLS
blocks and enables/disables data paths depending on the pro-
cessing stage in which the algorithm is. In Figure 1, the differ-
ent modules are marked with colored square/s indicating the
stage or stages these resources are operative. The same color
code is used to tag the data sources in the selectors (trapeziums
in Figure 1) for the different steps of the algorithm. This strat-
egy not only promotes the optimization of the available hard-
ware resources for the targeted application (i.e. FIFOs are used
as circular buffers to avoid instantiating larger memory mod-
ules) but it also permits that one memory buffer can be shared
by more than one producer and consumer, such as in the case
of the SBuffer, which is not possible to be modeled with current
HLS tools. Additionally, each stage of the LbL-FAD algorithm
depends on the previous one, so they must share information
thorough internal buffers, i.e. Stage 2 extracts the orthogonal
vectors Q and U that are stored in qMatrix and uMatrix, respec-
tively (xMatrix in Figure 1), then Stage 3 uses such vectors to
obtain the binary map of anomalies.

Also, it is worth mentioning that the architecture is config-
urable so it can be determined the degree of parallelism within
the HLS modules, concerning the number of bands that can
be processed in one clock cycle, namely PEs (Processing Ele-
ments). The higher the number of PEs , the higher the perfor-
mance obtained, as it is disclosed in Section 4.

4. EXPERIMENTAL RESULTS

In order to evaluate the LbL-FAD hardware accelerator, the
proposed architecture has been implemented using the Vivado
Design suite from Xilinx. Specifically, the prototype has tar-
geted the XC7Z020-CLG484 version of the Xilinx Zynq-7000
SoC. This FPGA has been selected because of its low-cost,
low-weight and high flexibility, features that make it an in-
teresting device to be integrated in aerial platforms, such as
drones.

Figure 2 graphically shows the performance and power
consumption obtained by the FPGA-based implementation for
several versions of the accelerator, where both the number of
PEs and the clock frequency have been varied. The input hy-
perspectral images are 825 lines height, each line comprising
1024 hyperspectral pixels with 12-bits depth and 160 bands
each. The employed data set was collected by an aerial plat-
form consisting of a Specim FX10 pushbroom hyperspectral
camera mounted on a DJI Matrice 600 drone during some
flight campaigns. The first nf = 100 hyperspectral lines are
used to calculate the background spectra and distribution in
Stage 1 [1] (lines 1-4 of Algorithm 2) and the following lines

Fig. 2. Performance and power trade-off of different versions
of the LbL-FAD accelerator
(725) are processed to search for anomalies.

Performance results (left vertical axis, blue series), mea-
sured as the number of frames composed of 1024 hyperspec-
tral pixels each that can be processed per second (FPS), show a
linear behaviour, indicating that the architecture scales accord-
ingly with the increment of the number of PEs. On top of that,
it is maintained the relation of ≈ +40% performance increase
between the slowest (100MHz) and the fastest (143MHz) ver-
sions of the hardware.

The effects of the variation in the clock frequency of the
circuit have been also studied in relation with the impact on
power consumption. In general, the implementation is highly
efficient from the point of view of the required energy bud-
get (right vertical axis, orange and red bars), ranging from
less than 0.5 watts (PE=1) to little more than 1 and 1.3 watts
(PE=20, 100MHz and 143MHz versions respectively).

The power efficiency in terms of FPS per watt (left verti-
cal axis, green series) is a figure of merit of great importance
for applications that use remote sensing platforms powered by
batteries. In this sense, it is critical to maximize the flight time
of the drone. It can be observed that the implementation at
the highest clock speed consumes a similar amount of energy
than the slower one, whilst delivering a significant more per-
formance. Therefore, the relation FPS/W is clearly favorable
for the hardware running at 143MHz.

5. REFERENCES

[1] M. Dı́az, R. Guerra, P. Horstrand, S. López, and
R. Sarmiento, “A line-by-line fast anomaly detector for
hyperspectral imagery,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 57, no. 11, pp. 8968–8982, 2019.

[2] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vis-
sers, and Z. Zhang, “High-Level Synthesis for FPGAs:
From Prototyping to Deployment,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 30, no. 4, pp. 473–491, April 2011.


