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Abstract—Onboard data processing for on-the-fly decision-
making applications has recently gained momentum in the field of
remote sensing. In this context, hyperspectral anomaly detection
has received a special attention since its main purpose lays on
the identification of abnormal events in an unsupervised manner.
Nevertheless, onboard real-time hyperspectral image processing
still poses several challenges before becoming a reality. This is
why there is an emerging trend towards the development of
hardware-friendly algorithmic solutions embedded in reconfig-
urable devices. In this context, this work contributes with a
hardware architecture that ensures a progressive line processing
in time-sensitive applications limited by the scarcity of hardware
resources. In this sense, we have implemented the state-of-the-
art HW-LbL-FAD detector on a reconfigurable hardware for
a real-time performance. Specifically, we have selected a cost-
optimized FPGA (ZC7Z020-CLG484) to implement our solution
whose results draw up a good trade-off between the following
three features: time performance, energy consumption and cost.
The experimental results indicate our hardware component is
able to process hyperspectral images of 825x1024 pixels and 160
bands in 0.51 seconds with a power-budget of 1.3 watts and
a device cost around 150C. Regarding detection performance,
the HW-LbL-FAD algorithm outperforms other state-of-the-art
algorithms.

Index Terms—FPGAs, hyperspectral imaging, anomaly detec-
tion, line-by-line performance, real-time, High-Level Synthesis,
low-power.

I. INTRODUCTION

IN the recent years, anomaly detection has been extensively
studied in the field of hyperspectral data analysis [1]. Its

popularity is further enhanced by the ability to spot abnormal
events or man-made targets in an unsupervised manner. Gen-
erally speaking, anomalies are seen as not abundant pixels in
a scene whose spectrum is significantly dissimilar to their sur-
roundings or to the predominant background pattern. Hence,
one basis behind the anomaly detection issue is the identi-
fication of desired targets that are unknown in advance and
whose existence could be indicative of a suspicious behaviour.
This lack of previous knowledge turns the detection of anoma-
lous spectra into an essential matter in military and civilian
applications, such as defense and surveillance, environmental
monitoring, rare natural disaster detection, agriculture studies,
among others [2], [3].
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From the foregoing, it is easy to conclude that anomaly
detection is a very challenging task whose success relies
on accurate modelling of unknown and heterogeneous back-
ground. To do so, several algorithmic solutions have been
proposed in the literature. The most widely studied are based
on statistical approaches under the assumption of Gaussian
multivariate distribution. In this sense, the Reed-Xiaoli (RX)
[4] method is regarded as the benchmark in the anomaly
detection field and several upgraded variants can be found in
the literature [5], [6], [7], [8], [9]. Nonetheless, the emergence
of sparsity [10], [11], [12], [13], [14], compressed sensing
and collaborative-representation-based [15] models has made
possible to successfully develop other non-RX-based methods
that do not assume a normal probability function in very
heterogeneous background pattern [16]. Other proposals are
based on dimension reduction and feature extraction in order
to remove inter-band correlations among spectral bands [17].
Additionally, recent advances in deep learning and tensor
theory have also drawn increasing attention [18], [19].

Most of the aforementioned algorithmic solutions reach
excellent levels of accuracy in the detection results but, at
a expense of raising the computation complexity of the in-
volved operations. It is usually reflected in intensive memory
requirements, high implementation costs and non-scalability
[20], [21], [22], [23], [24]. This fact has prevented their full
incorporation in earth observation systems for onboard image
processing, such as unmanned aerial vehicles (UAVs). These
aerial platforms are actually still limited in terms of compu-
tational capacities, power budget and data storage. Therefore,
on-Earth processing has been the mainstream solution for the
hyperspectral data handling. Nevertheless, the ever-growing
acquisition data rates of the newest-generation of hyperspectral
cameras and, the bottleneck around the transmission of huge
volumes of data make it increasingly unfeasible the realiza-
tion of low-latency decision-making applications [25], [26].
Accordingly, the onboard processing has become a potential
solution for these scenarios [27], [28], [29].

Additionally, the causality inherent to push-broom/whisk-
broom-based frameworks must be also met for paving the way
to a real-time performance. Nonetheless, there is a lack in the
literature of non-global algorithm definitions that are able to
independently process blocks of image pixels. In this context,
the Hardware-friendly Line-by-Line Fast Anomaly Detector
for Hyperspectral Imagery (HW-LbL-FAD) [30], [31] emerged
to resolve the aforementioned requirements in the field of
anomaly detection.

The HW-LbL-FAD algorithm is a subspace-based anomaly
detector that follows an orthogonal projection strategy for



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. X, NO. Y, MONTH YEAR 2

estimating the orthogonal subspace spanned by the background
distribution in which anomalous spectra are easily identified.
This algorithm was particularly designed to meet the con-
straints imposed by nowadays remote sensing applications
based on pushbroom/whiskbroom scanners. In this sense,
this proposal processes blocks of image pixels independently,
ruling out any spatial alignment restriction. Therefore, the
methodology followed by the HW-LbL-FAD algorithm is well
aligned with the needs imposed by the aforementioned appli-
cations since the detection of anomalous entities is conducted
in a line-by-line fashion. Apart from this, the progressive line
processing also offers other benefits derived from the low
volume of data to be stored and processed at once, such as a
reduction in the required hardware resources and the speed-up
of the data handling processes.

In addition, the HW-LbL-FAD follows a mathematical
strategy oriented to the reuse of the operations involved in
its different computing stages for both the modelling of the
background pattern and the detection of the anomalous spectra.
This feature makes it possible the fully implementation of the
HW-LbL-FAD on low-cost and low-power embedded systems
ruling out any process of reconfiguration due to the lack of
hardware resources. This approach also derives in a saving in
the time-to-market and the invested human endeavours since
allows to focus on the enhancement of the performance and
the design of a datapath and control logic that enabled the
time-sharing of the hardware modules and the optimal use of
the resources.

Against this backdrop, the main motivation of this work is
to demonstrate the aforementioned assertions about the HW-
LbL-FAD but under operating conditions. Therefore, the goal
is to contribute to the scientific community with a verified
hardware structure that ensures a progressive line processing
in time-sensitive applications limited by the scarcity of hard-
ware resources. In particular, we present a low-power, energy
efficient and cost-optimized solution for a complex, multi-
staged anomaly detection algorithm for hyperspectral imaging
targeting a Field Programmable Gate Array (FPGA).

From the engineering point of view, this work makes it the
most of the use of HLS (High-Level Synthesis) technologies
and tools, by applying best practices and efficient design
flows to the development of a custom HW-LbL-FAD hardware
accelerator. Working with models at a higher abstraction
level is key to boost engineers productivity within a HLS-
based workflow since it enables the easier reuse of previous
work. In this sense, the proposed architecture extends and
improves a set of operators developed for a totally different
application: hyperspectral imaging compression [32]. As it
is the case of the software world, the adaptation of legacy
code and its fine tuning to match the new functional and
not functional requirements shorten the development time and
effort and allows engineers to focus more on optimization and
integration.

All of the above, together with the fact that FPGA-based
implementations can provide much more competent levels of
performance while sustaining lower power consumption com-
pared with graphical processing units (GPUs) [33] contributes
to endorse the use of the reconfigurable technology in the field

of high-performance remote sensing applications.
The rest of this document is organised as follows. Section

II includes a brief outline about the mathematical method
behind the computing stages addressed by the HW-LbL-FAD.
Section III includes a comprehensive explanation about the
implementation model proposed for the execution of the HW-
LbL-FAD in the targeted FPGA SoC (System on Chip). Sec-
tion IV evaluates the proposed anomaly detector by analyzing
the hardware architecture implemented on a ZC7Z020 FPGA
device. Section V collects a discussion about the performance
and hardware resource utilization of the proposed hardware
architecture compared with other state-of-the-art anomaly de-
tectors also implemented on reconfigurable hardware. Lastly,
Section VI draws the main conclusions of this work.

II. METHODS I: ALGORITHM DESCRIPTION

In this Section, it is described the general outline of the
selected anomaly detection method that will help us to face the
challenges introduced previously in Section I. In this regard,
the HW-LbL-FAD algorithm shows some unique character-
istics that make it a good candidate for the aforementioned
purposes:

1) Low computational complexity and high degree of par-
allelism of the involved operations.
The different computing stages defined in the HW-LbL-
FAD algorithm uses a set of core operations (see Section
II-B) that does not perform computationally complex
matrix operations, such as inverse matrix calculation
or the extraction of eigenvalues and eigenvectors. This
facilitates the subsequent hardware implementation, in
terms of engineering effort and time to market, and also
reduces the amount of required hardware resources.

2) Reduction in the computing hardware resources.
The HW-LbL-FAD algorithm is a subspace-based
anomaly detector whose different computing stages can
be grouped in two differentiated processes: (1) the
modelling of the background distribution and; (2) the
detection of potential anomalous spectra. Both processes
are based on the same mathematical method, and they
actually share the aforementioned set of core operations.
Consequently, the resources devoted to the implementa-
tion of the hardware operators can be time-shared by
these two processes. To this end, a good design of the
interconnection datapath and a precise synchronization
of the involved operations require an extra effort.

3) Line-by-Line performance.
The HW-LbL-FAD algorithm is able to process blocks
of image pixels with not taking into consideration
any spatial alignment requirement. Also, the algorithm
analyzes the blocks as if they were independent of
each other. Hence, the method followed by the HW-
LbL-FAD algorithm is well aligned with the needs
imposed by nowadays remote sensing applications based
on pushbroom/whiskbroom scanners since the detection
of anomalous pixels could be conducted in a line-by-line
fashion. In addition, it also leads to a reduction in the
amount of data to be stored and managed at one time,
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thereby minimizing the required memory resources and
also speeding up the process of data analysis.

4) Fixed-point notation.
The set of core operations can be seamlessly imple-
mented using both floating-point and fixed-point no-
tation, without incurring on a significant loss of ac-
curacy in the detection results, as it was analysed in
[32][34]. Therefore, the HW-LbL-FAD can be properly
implemented using the most used computing platforms,
such as FPGAs and GPUs, and still make it the most
of the underlying architecture-specific characteristics,
maintaining excellent performance levels.

The mathematical background behind the HW-LbL-FAD
algorithm is described in the following sections. In particular,
the introduction of the aforementioned set of core operations
is done in Section II-B whilst the algorithm description is
addressed in Section II-C.

A. General Notation

Before starting with the HW-LbL-FAD algorithm descrip-
tion, it is needed to define some variables and terminology
employed thorough the remainder of this manuscript. A hy-
perspectral image, HI = {Fi, i = 1, ..., nr}, is a sequence
of nr hyperspectral frames or lines of pixels, Fi, comprised
by nc pixels with nb spectral bands. Pixels within HI are
grouped in blocks of BS pixels, Mk = {rj , j = 1, ..., BS},
being BS usually equal to nc, or multiple of it, and k
spans from 1 to nr·nc

BS hyperspectral frames. µ̂ is the average
pixel or centroid of each Mk block. C = {cj , j = 1, ..., BS}
represents the centralized version of the input image block,
Mk. Ek = {en, n = 1, ..., p} saves the p most different
hyperspectral pixels extracted from each Mk block, whilst
B* = {Ek, k = 1, ..., nf} retains the subset of selected pixels
Ek = {en, n = 1, ..., p} within the first captured nf Mk.
Vk = {vn, n = 1, ..., p} comprises p vectors of BS elements
where each vn vector corresponds to the projection of the BS
pixels within Mk onto the corresponding n extracted pixel,
en. Q = {qn, n = 1, ..., p} and U = {un, n = 1, ..., p} save p
pixels of nb bands that are orthogonal among them.

B. Set of Core operations

The HW-LbL-FAD algorithm is based on the concept of
orthogonal subspace projections for the selection of the most
different pixels in a subset of image spectra, as well as for
the estimation of the amount of spectral information that can
be represented by them. For doing this, the HW-LbL-FAD
algorithm orchestrates a set of core operations that actually
carries out the orthogonalization process defined by the well-
known state-of-the-art Gram-Schmidt method [35].

These operations are shown in the pseudo-code displayed
in Algorithm 1 and can be applied to the entire image or
independently to a block of BS hyperspectral pixels, Mk.

1) Average pixel calculation.
The first characteristic pixel, e1, to be extracted is that
with the highest deviation from the average pixel, µ̂.
Hence, the first step is to compute µ̂ for the input image
block, Mk, (see Line 1).

2) Centralization.
The second step is to centralize the input image block,
Mk, subtracting µ̂ from each image pixel and obtaining
the centralized version of the input image, C, (see Line
2).
Afterwards, the p most representative pixels within Mk

are sequentially extracted by Lines 3 to 18 of Algo-
rithm 1. To do so, the orthogonal projection of each
image pixel with respect to the selected pixels, en,
is addressed implementing the aforementioned Gram-
Schmidt method. Once the first representative pixel has
been selected, the following operations are in charge
of sequentially extracting new characteristic pixels by
selecting the pixels with the largest orthogonal projec-
tions to the pixels already extracted. At this point, image
pixels just retain the information that is not contained by
previously selected pixels and thus, that is orthogonal to
them. With it, it is achieved to select the most different
pixels in each iteration, understanding it, those pixels
that cannot be well represented by previously selected
pixels. For doing so, the operations listed below are
repeated until a certain stop condition is met (see Line
8).

3) Brightness calculation.
The selected pixels are those with the highest dot prod-
uct with itself in each iteration (see Lines 4 to 6). In the
remainder of this document, it is referred to as brightness
of a pixel. The selected pixels, en, are those from Mk

corresponding to the highest brightness in C (see Line
11). Then, their orthogonal projection counterparts in C,
qn, and their normalised version, un, are accordingly
obtained as shown in Lines 12 and 13, respectively.

4) Projection
After that, all vectors within C are projected onto un,
obtaining the projection vector, vn, (see Line 14).

5) Subtraction
After the information that can be spanned by the defined
qn and un vectors is stored in the projection image
vector, vn, it is subtracted from C (see Line 15).
Hence, C now only retains the spectral information that
is orthogonal to the already selected spectra. For this
reason, pixels within Q and U are orthogonal among
each other.

Although the aforementioned set of core operations are used
for the background modelling and the detection of anomalous
spectra in the HW-LbL-FAD, Dı́az [31] also probed that other
hyperspectral analysis techniques can be addressed using them,
such as lossy compression, target detection, unmixing, etc.
This feature enables the coexistence of multiple applications
at the same time with the advantage of sharing the most
computationally costly operations. From a productivity point
of view, it also leads to a reduction in the time to market since
just a single mathematical approach has to be analyzed and
implemented. To give an example, the HyperLCA algorithm
[34] is a transform-based lossy compressor whose spectral
transform uses the aforementioned set of core operations
for the decorrelation of the data. In [32] was evaluated its
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suitability for line-by-line scenarios through the design of
a hardware architecture implemented on a cost-optimized
FPGA. The advantage of sharing the same mathematical model
is that the HLS operators that instantiate the functionality of
the core operators for the data correlation are for the most part
reused in this current work for anomaly detection.

Algorithm 1 Set of core operations

Inputs: Mk = [r1, r2, ..., rBS ], α
Outputs: E = [e1, e2, ..., ep] {Characteristic pixels}; µ̂ {Average Pixel};
Q = [q1, q2, ..., qp] {Orthogonal vectors}; U = [u1, u2, ..., up] {Orthonormal
vectors}; τ {Threshold}
Algorithm:

1: Average pixel: µ̂;
2: Centralization: C = Mk − µ̂;
3: while exit = 0 do
4: for j = 1 to BS do
5: Brightness: bj = c′j · cj ;
6: end for
7: Maximum Brightness: jmax = argmax(bj );
8: if

bjmax
(rjmax

−µ̂)′·(rjmax
−µ̂)

· 100 < α then
9: Stop Condition: exit = 1

10: else
11: Extracted pixels: en = rjmax ;
12: qn = cjmax ;
13: un = qn/bjmax ;
14: Projection: vn = u′

n · C;
15: Subtraction: C = C − qn · vn;
16: τ = bjmax
17: end if
18: end while

C. The HW-LbL-FAD algorithm

The HW-LbL-FAD algorithm is a subspace-based anomaly
detector that is based on the concept of the linear mixing model
(LMM) to deal with the anomaly detection issue. Built on the
premise that the anomalous targets and the background signals
lie into a different lower dimensional subspace, the LMM can
be rewritten as:

rj =
p∑

n=1

bn · aj,n + s · asj + nj (1)

where bn represents the n background signal, s is the desired
target signature, as is the abundance factor of s in the pixel rj
and nj represents the noise contained in the image pixel rj .

Nonetheless, anomalous spectra are not known before-hand
but, a distinguishing feature is that they do no match the
background pattern and thus, they cannot be accurately repre-
sented by the background samples. Therefore, subspace-based
anomaly detection is based on the idea that anomalous entities
are better detectable in the orthogonal subspace spanned by
the background distribution. In this context, the projection
separation index for an image rj is calculated as [36]:

d = (rj − µ̂b)
′ · P · (rj − µ̂b) (2)

where µ̂b is the estimated average pixel of the background
samples and P is the matrix that projects the data onto
the orthogonal subspace to one spanned by the background
samples.

On this basis, the issue around the detection of anomalous
targets can be split in two main problems, one is the modelling

of the background pattern and the other is the computation
of the orthogonal subspace spanned by it in order to mark
those pixels with the highest projection as potential anomalies.
Therefore, the functionality of the HW-LbL-FAD algorithm is
described in four computing stages in order to address the two
aforementioned tasks. Figure 1 shows the dataflow diagram of
the HW-LbL-FAD computing stages, in which the inputs and
outputs are also depicted. The two first stages are performed
sequentially, whilst the two last are performed in parallel.
These computing stages are further analysed in the following
Sections and summarized in Algorithm 2.

Stage 1

Mk

B*

Line-by-line extraction of the
background reference spectra

nf

Stage 2
Overall background
subspace estimation

Stage 3
Computation of the orthogonal

subspace spanned by the
background pattern

Stage 4
Detection of

anomalous targets

U Q
b

Mk

 (bjmax)

cj

AD

^

Fig. 1. Dataflow of the HW-LbL-FAD computing stages.

Algorithm 2 The HW-LbL-FAD algorithm.

Inputs: HI = [M1, M2, ..., M nr·nc
BS

], nf , α

Outputs: AD = [x11, x12, ..., xkj ]
Algorithm:
Stage 1:

1: for k = 1 to nf do
2: Ek = Algorithm 1(Mk, α)
3: B* = [B*, Ek];
4: end for

Stage 2:
5: [µ̂b, Q, U, τ ] = Algorithm 1(B*, α)

Stage 3: Applied to each new received frame, Mk , k > nf

6: for j = 1 to BS do
7: Centralization: cj = rj − µ̂b

8: for n = 1 to p do
9: Projection: v = U′

n · cj
10: Subtraction: cj = cj − Qn · v
11: end for

Stage 4:
12: Brightness AD: dj = c′j · cj
13: if dj ≤ 1.5 · τ then (xkj = 0)
14: else(xkj = 1)
15: end if
16: end for

1) Modelling of the subspace spanned by the background
pattern: The first two computing stages of the HW-LbL-FAD
algorithm, referred to as Stage 1 and Stage 2, are in charge of
the background estimation. In this sense, each hyperspectral
frame, understood as a line of hyperspectral pixels captured
by a pushbroom scanner per shot, is independently processed
using the set of core operations introduced in preceding
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Section II-B. These two algorithm computing stages are further
analysed below.

- Stage 1: Line-by-line extraction of the background refer-
ence spectra.

The first stage of the HW-LbL-FAD algorithm consists in
the feature selection of a set of reference spectra representative
of the background distribution. To do so, the first nf hyper-
spectral frames; Mk, k = [1, ..., nf ]; captured by the hyper-
spectral scanner are independently processed in order to select
the most different spectra within them, B* = [E1, ...,Enf

] (see
Lines 1-4 of Algorithm 2). It is done under the assumption that
these image blocks are fully representative of the background
distribution and hence, free of anomalies. For this reason, it is
critical that enough nf hyperspectral frames are taken to cover
all spectral variability of the background pattern. In addition,
background samples obtained in previous flights may be used
instead of obtaining them from the first nf frames.

- Stage 2: Overall background subspace estimation.
Since the hyperspectral frames are independently processed

in the Stage 1 ruling out any spatial alignment restriction,
B* comprises several alike spectra. As a consequence, it is
required to obtain a subset of the most dissimilar pixels within
B* that better define the background distribution, which is
done in the Stage 2 of the HW-LbL-FAD algorithm (see Line
5 of Algorithm 2). To do so, the set of core operations is
applied once again, though input matrix, Mk, is now replaced
by B* whose columns collect the background reference vectors
extracted from each first nf frames. As outputs, we obtain the
background subspace comprised of orthogonal vectors, Q and
U, whose definition prevents the implicit computation of the
orthogonal projection matrix, P, in Stage 3 of the algorithm,
which is a very computationally demanding task.

Additionally, C in Algorithm 1 retains the spectral infor-
mation lost if the background is reconstructed using the p
reference vectors selected in this Stage 2. On this basis, the
remaining maximum brightness in C, τ = bjmax (see Line 16
of Algorithm 1), could be potentially used as a benchmark to
identify anomalous pixels in Stage 4.

2) Computation of the orthogonal subspace spanned by the
background pattern and detection of anomalous targets: The
last two computing stages of the HW-LbL-FAD algorithm,
referred to as Stage 3 and Stage 4, are in charge of the
estimation of the orthogonal subspace to the one spanned by
the background pattern computed in the two previous stages
and the detection of the anomalous pixels. For doing so,
each hyperspectral pixel, rj , within new sensed hyperspectral
frames, MK , k > nf , is independently processed using some
of the already mentioned set of core operations, as it is
analysed in more details in the following lines.

- Stage 3: Computation of the orthogonal subspace to the
one spanned by the background pattern.

The third stage of the HW-LbL-FAD algorithm focuses
on the computation of the orthogonal subspace matrix, P.
Nevertheless, this calculation is computationally expensive
since it implies a matrix inverse computation whose dimension
directly depends on the number of background samples, p. On
this basis, the HW-LbL-FAD algorithm takes into considera-
tion this issue and offers an optimized alternative that leads

to a posterior more easy-handled hardware acceleration of
the computing stage. Consequently, the orthogonal projection
matrix, P, is not explicitly calculated.

In this regard, the projection separation index, d, denoted in
Equation 2, actually matches with the brightness of each image
pixel, rj , after being subtracted all the information belonging
to the background and hence, that is orthogonal to the subspace
spanned by the background distribution. Hence, it is also
equivalent to applied the Gram-Schmidt orthogonalization
method in order to obtain the orthogonal component of each
image pixel, rj , to the subspace spanned by the Q and U
vectors outputted in Stage 2, which are indeed an orthogonal
representation of the background distribution (see Lines 6-11
of Algorithm 2). As it can be noticed, following this strategy
permits to reuse the already defined set of core operations,
which leads to an optimization of the human and hardware
resources and lower time-to-market.

- Stage 4: Detection of anomalies.
Finally, d score computation is actually equal to the bright-

ness calculation of the remaining spectral information con-
tained in each image pixel, rj , after Stage 3. Then, if d is
higher than a threshold, it is labelled as an anomaly. In this
sense, the HW-LbL-FAD also defines a automatic thresholding
method that enables the on-the-fly line-by-line segmentation of
the anomalous targets. For doing so, it is used the τ estimated
in Stage 2. Hence, a potential anomalous pixel must derive in
a d > 1.5 · τ (see Lines 12-16 of Algorithm 2).

III. METHODS II: HARDWARE IMPLEMENTATION

The HW-LbL-FAD method has been implemented on an
FPGA-based computing platform by using a HLS (High-Level
Synthesis) tool to define independent specialized hardware ac-
celerators for each type of operations involved in the algorithm
computing stages. HLS technology allows engineers to reduce
the development time and complexity of custom-hardware
designs by introducing High-Level Languages (HLLs), such as
C or C++, to describe the functionality that is later translated
into a lower level RTL (Register Transfer Level) model [37].
HLS frameworks provide the developer with the means to
either optimize and improve legacy HLLs models wrote by
non-hardware engineers or initiate new project from scratch.

In this work, we leverage the use of HLS tools to rise the
productivity and shorten the development cycles. To this end,
the HLS models of some core operations used by the HW-
Lbl-FAD algorithm were inherited from a previous develop-
ment [32] targeting the accelerated version of a hyperspectral
imaging compression application. For this legacy components,
the main work to be performed was their adaptation so that
they match the functional and non-functional requirements of
the HW-Lbl-FAD implementation. This component-tailoring
process is shorter and less laborious than approaching the
design of a new one, which resulted into the reduction of the
effort and completion time of the project. However, the process
it is not completely free from fine-tuning and optimization
tasks in order to reduce latency and increase the throughput.

Therefore, HW-Lbl-FAD datapath is a combination of
reenginered legacy modules and new ones, implementing the
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processing of the hyperespectral data. Once such modules
were modeled and tested, it was necessary to orchestrate their
functioning in order to implement the behaviour of the differ-
ent stages of the anomaly detector. Also, the synchronization
between stages needed of a supra entity responsible for routing
the data through the hardware modules. The approach followed
to provide a solution to this two challenges was to implement
an FSM (Finite State Machine) in VHDL that activates the
corresponding selectors (blue trapezoids in Figures 2, 3 and
4), and also each specialized hardware accelerator at the right
time. The management of hardware modules is driven by
the standard handshake protocol of Vitis HLS. This protocol
defines four control signals to the hardware interface of the
modules; it contains an input control signal, start, which is
used to activate the module. In addition to this signal, the
protocol also includes three output control signals that report
the status of the modules; the done signal is used to indicate
that the module has finished its execution, the idle signal states
that the module is at an idle state and the ready signal marks
the time at which the module can receive another input data.

From the performance point of view, the arithmetic has been
adapted to fixed-point precision in order to be suitable for
FPGA technology, which is more efficient dealing with integer
operations. In previous works [32][34] it was demonstrated
that the simplification of the arithmetic operations by employ-
ing integer arithmetic and bit shifting [38] did not affected
significantly to the accuracy of the results, even increasing the
quality of the output in some configurations of the input. Thus,
applying the lessons learnt from previous works, it has been
set the size of hyperspectral information to a maximum of
12 bits, which is the most common bit size in remote sensing
applications [39], [40] and also provides good accuracy results
as is shown in [32].

For the sake of clarity, the following sections describe the
hardware implementation of the four stages that compose the
HW-LbL-FAD algorithm (see Algorithm 2) and explain the
decision making process followed in each stage. Furthermore,
the FPGA-based architecture is only one, but it has been di-
vided into three figures, each of them showing how the core of
operations carries out a particular stage of the HW-LbL-FAD.
To do so, only the modules and connections active during one
stage are highlighted, whilst the others are watermarked.

A. Stage 1
Figure 2 highlights the operations performed in the first

stage of the HW-LbL-FAD algorithm to extract the background
reference spectra. Firstly, the original hyperspectral block, Mk,
is stored in an internal memory (SBuffer) and its centroid or
average pixel (µ̂) is obtained. Both operations are performed
by the Avg module, which is able to compute several bands
of a hyperspectral block in parallel (line 1 of Algorithm 1).
Once the Avg module finishes, the Cent module can start the
centralization of the original hyperspectral block by reading it
from the SBuffer, i.e. this operation consists in subtracting the
average pixel, which was calculated by the Avg module, from
each hyperspectral pixel of the original block, Mk (line 2 of
Algorithm 1). Therefore, the SBuffer FIFO (First In, First Out)
must guarantee enough depth to store a hyperspectral block.

The result of the Cent module is written into the BBuffer
FIFO, whose depth is tiny in contrast to the SBuffer. This
small depth is due to the fact that, as soon as the output of
the Cent module is ready, the next module can consume it.
Hence, the loop in Algorithm 1 can start without waiting for
the completion of the block centralization step.

Unlike the Avg and Cent modules, the HLS model of
the Brightness component had to be revisited in order to
implement the dynamic stop condition required by the HW-
Lbl-FAD algorithm. This feature was not supported by the
version developed in [32] since the number of iterations was
fixed at design time, given a target compression rate.

The number of times the Brightness, Projection and Sub-
traction steps are executed depend on the brightest hyperspec-
tral pixel selected during the current iteration, its brightness
in the first iteration and the α input parameter (line 8 of
Algorithm 1). All these values, but the α parameter that is
fixed at design time, are provided by the Brightness module.
Therefore, the Brightness module stores all brightness values
calculated in the first iteration in a BRAM (b element in green
of Figure 2) and provides to the Stop condition module the
value of the brightest hyperspectral pixel (bjmax) and its index
inside the hyperspectral block (index), which is currently being
processing. The Stop condition module determines the number
of iterations to be carried out, i.e. it implements the control of
exit variable of Algorithm 1 and the if statement. In this regard,
the if condition implies that at least the brightness module
is executed twice, since in the first iteration the condition is
evaluated to false because the same brightness is being com-
pared and there is no difference. The Stop condition module is
also responsible for providing the indexes of the hyperspectral
pixels that correspond to the background reference spectra
(B∗), thus it returns one index per iteration whenever the
condition of if statement is evaluated to false.

Provided that the Stop condition does not trigger the loop
exit, the rest of the operations inside the loop of Algorithm 1
can be carried out. Thus, the orthogonal projection vectors
qn and un are accordingly obtained using the brightest
pixel computed by the Brightness module (lines 12 and 13
of Algorithm 1) and stored in separate FIFOs (depicted as
xVector in Figure 2): qVector and uVector, respectively. From
a performance point of view, Brightness module has been
optimized, introducing a handmade ping-pong buffer that
allows to obtain better time results compared to the initial
inherited implementation in [32], thanks to the fact that the
initial interval between hyperspectral pixels has been halved.
This new implementation maintains the independence of the
location of the brightest hyperspectral pixel.

Although the Projection and Subtraction modules are repre-
sented by separate boxes in Figure 2, it must be mentioned that
both perform their computations in parallel. The Projection
module reads a hyperspectral block from SBuffer, which has
been previously written by the Brightness. In the first iteration,
the Brightness module is fed with the output of the Cent
module (that is, the centralized block) and consumes the output
of the Subtraction module during the second and following
iterations. Therefore, in SBuffer is always present a copy of
the hyperspectral block that must be processed. The Projection
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SBuffer

Fig. 2. Stage 1: Line-by-line extraction of the background reference spectra.

module obtains the projected image vector according to line
14 of Algorithm 1. In parallel, the hyperspectral pixel is
written in PSBuffer, which can store two hyperspectral pixels
that is the minimum depth to prevent the dataflow from
stallig. It is because the Subtraction module needs the same
hyperspectral pixel read by the Projection module and the
projections returned by such module (written in PBuffer) to
obtain the subtracted image according to line 15 of Algorithm
1. The Projection and Subtraction modules read the orthogonal
projection vectors un and qn, respectively. However, we have
improved this operation by implementing a handmade array
partition of these vectors, thus several bands of a hyperspectral
block can be operated in parallel.

From the point of view of the dependencies among the
different modules that compose the implementation of the
HW-LbL-FAD algorithm, the Cent module cannot start until
the centroid, µ̂, is calculated by the Avg module, so these
hyperspectral operations are executed one after the other.
However, the Brightness module can start just when the
first output of the Cent module is ready. Then, the Stop
condition module must determine whether the loop Projection,
Subtraction, Brightness modules must be executed (operations
inside the red box found at the bottom left corner in Figure 2).
The three hardware modules can perform its operations in
parallel; the projected and subtracted image tasks have not
dependencies with the next brightness operation, i.e. intra-loop
dependencies have been solved. The FSM must be informed
when it should stop the loop, thus, the Stop condition module
must report such event to it. Finally, the FSM cleans the
internal memories that contain invalid values for the following
iterations or stages. This is due to the fact that the last iteration

stores the hyperspectral block in SBuffer and new orthogonal
vectors are calculated but not used, that is the xVector FIFOs
contain data. All of these tasks are repeated nf times or, in
other words, nf hyperspectral blocks are needed to obtain
the background reference spectra, besides, the tasks must be
scheduled as shown in the bottom box of Figure 2.

B. Stage 2

The architecture of the HW-LbL-FAD hardware accelerator
is an evolution of the proposed design for the hyperspectral
image compression use case presented in [32]. As it was pre-
viously mentioned, HLS tools and design workflow provides a
neat, easy and fast way to customize already available models
and integrate them in new designs. In this work, concerning
Stage 1, the focus of the effort has been put on optimising the
legacy FPGA-based architecture and components, reducing the
bottleneck points in order to achieve higher performance and
making them suitable for the new application scenario (i.e.
new functionality added and interface accommodation at RTL
level.

Nevertheless, the HW-LbL-FAD algorithm involves new
steps, not covered in the compression of hyperspectral images,
that must be carried out by the accelerator. Taking as the
stating point the Stage 1 enhanced datapath, the new func-
tionality to be supported implies, mainly, the re-engineering
of the routing resources and inter-module connection infras-
tructure. The HW-LbL-FAD algorithm was envisioned, from
the conception phase, as a solution targeting small FPGA
devices with low-power consumption, limited-resource. Thus,
the modelling of the background distribution and the detection
of potential anomalous spectra were designed to use the same
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SBuffer

Fig. 3. Stage 2: Overall background subspace estimation.

set of core operations that, when it comes to physical imple-
mentation, results into shared computing resources. Behavioral
architectural variations are done by small selectors (governed
by the FSM control signals) whose input or output channel
depends on the current stage. Thereby, the same hyperspectral
hardware operators can be reused time multiplexed throughout
the different stages.

The input hyperspectral block, B∗, for this second stage
is the background reference spectra outputted during Stage
1. In contrast to this previous stage, the second one only
operates with a single hyperspectral block instead of nf

blocks. However, it is highly likely that the block size will
be different in both stages. Implementing a solution where the
block size is variable causes an increase of hardware resources
and breaks potential hardware optimizations, so the proposed
solution maintains the block size across all stages to 1024
hyperspectral pixels. Thus, the hyperspectral block processed
by the second stage must be extended up to 1024 pixels by
repeating the data of the hyperspectral background block in
order.

Figure 3 shows an overview of the FPGA-based solution for
the second stage. It is worth noticing that the hardware mod-
ules are the same than in the previous stage, whilst the datapath
has been slightly modified by introducing two main architec-
ture variations. Firstly, the orthogonal projection vectors un

and qn extracted from the background hyperspectral block,
B∗, are stored into internal memories, uMatrix and qMatrix,
and are also consumed by Projection and Subtraction modules,
respectively. In other words, the outputs of Brightness module
feed the following modules like it was in Stage 1 and, besides,
a copy of these outputs are stored to be used by the next
stages. The number of orthogonal projection vectors, un and

qn, representative of the background distribution is also stored.
Secondly, the other change concerns the Stop condition module
which does not provide any output in this case. Now, the Stop
condition module stores in a register the remaining maximum
brightness, τ , of the background hyperspectral block, B∗.

Similarly to Stage 1, when the background hyperspectral
block, B∗, is processed some internal memories are cleaned
up. These memories store the four outputs that line 5 of Al-
gorithm 2 states; the qMatrix and uMatrix FIFOs, depicted as
xMatrix in Figure 3, stores the Q and U vectors, respectively,
the centroid of the background hyperspectral block, µ̂b, and
the remaining maximum brightness, τ , used as a threshold
in the subsequent Stage 4. The bottom box in Figure 3
shows the scheduling of the tasks, which coincides with the
previous stage, so there are no differences in terms of data
dependencies.

C. Stages 3 and 4

Stage 3 is the most different from the others, because it uses
only three hyperspectral operators (see Figure 4). Firstly, the
new received hyperspectral block, Mk, is centralized using
the centroid obtained from Stage 2, µ̂b. Thus, the centroid is
not calculated any more when a new hyperspectral block is
processed. Hence, the Avg module is bypassed and the Cent
module is actually the first operation to be performed (line 7
of Algorithm 2).

Once the hyperspectral block is centralized, it is stored in
SBuffer FIFO for being processed later by the Projection and
Subtraction modules, which form the new loop body of this
stage (lines 9 and 10 of Algorithm 2). Now, the number of iter-
ations is not dynamic but it is known in advance and matches
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Fig. 4. Stage 3 and 4: Computation of the orthogonal subspace spanned by the background pattern and detection of anomalous targets.

the number of orthogonal vectors extracted in the Stage 2,
p. Therefore, neither Brightness nor Stop condition modules
are enabled at this stage and thus, the Brightness module does
not generate any new orthogonal vectors, un and qn. Anyway,
the Projection and Subtraction modules obtain the projected
image, vn, and the subtracted image, C, respectively, from the
centralized hyperspectral block, using the orthogonal vectors
that were calculated in Stage 2 and stored in qMatrix and
uMatrix. It is worth mentioning that these orthogonal vectors
must be remembered for the following blocks. To address
such feature, the qMatrix and uMatrix memories have been
customized to store the data being read, i.e., the data are kept
in the same memory space and order (see dark blue arrows
of Figure 4). In addition, to be compatible with the previous
stages, the orthogonal vectors, un and qn, are also copied into
uBuffer and qBuffer, respectively. Thus, the data is injected
through the same channel to the Projection and Subtraction
modules.

Unlike Stages 1 and 2, the subtracted image obtained in
the last iteration of the loop is not discarded. Therefore, the
output generated by the Subtraction module in the last iteration
feeds Stage 4 (see orange arrow of Figure 4). This stage is
composed by a unique module called Brightness AD, that is
the responsible to obtain the anomaly map by identifying the
anomalous pixels. The Brightness AD module processes the
cj block to obtain the brightness of each hyperspectral pixel
that compose the last subtracted image and compare them
with the threshold, τ , obtained in Stage 2 (lines 12 and 13
of Algorithm 2, respectively). The output of this module is a
map of anomalies, where each bit reports the state of a pixel;
1 states that is an anomalous pixel (the brightness value is

greater than the threshold) and 0 indicates that the pixel has
not anomalous spectra.

Stages 3 and 4 can perform their tasks in parallel once
the hyperspectral block is centralized. The bottom box in
Figure 4 shows the scheduling of these tasks, the Projection
and Subtraction modules maintain the dependency between
them. As a novelty, the internal memories are not cleared here
since it is the Brightnes AD module that is in charge of reading
the subtracted image generated by the Subtraction module in
the last iteration. This fact is possible due to the number of
iterations is known in advance (p times) and the FSM manages
it by a counter.

IV. RESULTS

This section evaluates the proposed anomaly detector by an-
alyzing the hardware architecture implemented on a ZC7Z020-
CLG484 FPGA device, as well as, the performance achieved
by comparing the obtained results.

A. Detection performance analysis

The accuracy of the detection performance has been carried
out in software due to the flexibility to modify the algorithm
input parameters such as, the block size (BS) and the number
of image blocks used to estimate the background pattern
(nf ). This analysis was previously published in [30] [41], in
which three state-of-the-art anomaly detectors were selected
to compare their output with the software version of the
HW-LbL-FAD algorithm. In particular, the chosen algorithms
were the OSPRX [42], the LSMAD [43] and the PLP-KRXD
[44]. The analysis concluded that the HW-LbL-FAD algorithm
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Fig. 5. Anomaly detection results obtained by the HW-LbL-FAD.

features a high detection capability in all scenes, significantly
outperforming the other state-of-the-art methods.

This work extends previous studies and also analyzes the
detection accuracy achieved by the proposed hardware archi-
tecture of the HW-LbL-FAD algorithm to determine whether
there are differences with respect to the software-implemented
counterpart. To do so, it has been processed a set of six HSIs
taken by a custom acquisition platform over different farming
areas on the island of Gran Canaria (Spain). The first flight
campaign was carried out over a plantation of bananas in
the south-west of the island (27°52′17.4′′N 15°45′44.2′′W),
whilst the second and third flight campaigns were carried over
some vineyard areas in the center of the island (27°59′35.6′′N
15°36′25.6′′W and 27°59′15.2′′N 15°35′51.9′′W). The data
set was collected by a custom aerial platform that mounts
a Specim FX10 pushbroom hyperspectral camera on a DJI
Matrice 600 drone [45]. The image sensor works in the range
of the electromagnetic spectrum between 400 and 1000 nm
using 1024 spatial pixels per scanned cross-track line and 224
spectral bands. Nevertheless, the hyperspectral images used in
the experiments only retain the spectral information of 160
spectral bands; the first 20 and the last 45 spectral bands
have been discarded because of the bands near to the sensor
limits do not provide accurate spectral response. The input
hyperspectral images have 825 blocks of 1024 pixels and 160
spectral bands, where the first 100 blocks are used to calculate
the background spectra (nf ) in Stage 1 and the following
blocks (725) are analyzed for anomalies.

The selected data set contains some artifacts that are con-

sidered to be anomalous pixels. Their locations within the test
bench have been highlighted in the RGB representation of each
scene in Figure 5 using blue circles. These artifacts are people
walking among the crop fields in Drone Image 1, Drone Image
2, Drone Image 3 and Drone Image 5. In Drone Image 4, the
anomalous entities are two people standing next to the road.
Finally, Drone Image 6 contains a person walking through the
vineyard area and a concrete construction.

The HSIs acquired by the UAV-based aerial platform have
been used as the inputs to both the software implementation
of the HW-LbL-FAD algorithm and the hardware architecture
proposed in this work. Doing so, we are able to check whether
the behaviour of the hardware component differs from its
software counterpart. Figure 5 displays the detection maps
produced by the hardware implementation (column of pictures
labelled as HW-LbL-FAD), which have been superimposed on
a panchromatic representation of the analysed scenes. Lines
in red color indicate spatial hyperspectral frames corrupted
by anomalous signatures. As it can be observed, the outputs
of the hardware and software implementations are identical,
validating the operation of the proposed architecture.

B. Hardware analysis

Although there is a wide variety of FPGA devices and
technologies (e.g. Artix, Kintex or UltraScale+), the proposed
architecture has been implemented on a ZC7Z020-CLG484
FPGA device (Artix architecture) due to its low-cost and
low-power consumption, features that make it attractive for
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TABLE I
HARDWARE UTILIZATION OF HW-LBL-FAD ALGORITHM FOR A XILINX

ZYNQ-7020 PROGRAMMABLE SOC AFTER POST-SYNTHESIS PHASE.

PEs BRAM18K DSP48E FlipFlops LUTs
1 214 (76.43%) 14 (6.36%) 8,073 (7.59%) 6,744 (12.68%)
2 183 (65.36%) 22 (10%) 8,624 (8.11%) 7,470 (14.08%)
4 191 (68.21%) 38 (17.27%) 9,981 (9.38%) 9,115 (17.13%)
5 193 (68.93%) 46 (20.9%) 10,656 (10.01%) 9,940 (18.68%)
8 197 (70.36%) 70 (31.82%) 12,666 (11.9%) 12,411 (23.33%)
10 205 (73.21%) 86 (39.09%) 14,787 (13.9%) 14,856 (27.92%)
16 193 (68.93%) 134 (60.91%) 18,433 (17.32%) 18,724 (35.2%)
20 197 (70.36%) 166 (75.45%) 23,071 (21.68%) 23,493 (44.16%)

embedded applications. It is worth noting that the ZynQ SoCs
have a balanced performance per watt ratio, which is a very
important metric for space applications. However, the FPGA
resources in this kind of devices are limited, posing a new
challenge in the hardware design process. The reuse of already
available functionality in previously implemented hyperspec-
tral hardware operators and adapting them to be compatible
across stages has been the key to meet the constraints set by
the physical platform. Replication of modules was not feasible
in this scenario. The choice of a device of this manufacturer
implies the use of its tools. In particular, the Vitis Design Suite
has been used to prototype the proposed architecture.

Table I summarizes the resources required by each configu-
ration of the hardware accelerator, which have been extracted
from post-synthesis reports. The proposed architecture sets
the hyperspectral block size in 1024 hyperspectral pixels
(BS) with 12-bits depth and 160 bands, whilst the number
of processing elements (PE) is variable and it depends on
the number of bands that contains the hyperspectral block.
The PE parameter determines the number of hyperspectral
bands that can be processed concurrently by the Brightness,
Brightness AD, Projection and Subtraction modules. PE must
be a divisor of the number of bands so the HLS model for these
operators can keep the compliance with the recommended
coding style conventions. It is worth mention that the available
resources of the ZC7Z020-CLG484 FPGA device admits a
maximum configuration of 20 PEs since the 32 PEs version
requires 262 DSPs (digital signal processing units) DSPs but
only 220 are available. Therefore, the DSPs are the limiting
factor that handicaps the scalability of the architecture together
with the summation tree when using a map-reduce model
as a solution [32]. In contrast, the BRAM resources do not
depend on the number of PEs, it varies according to the block
size (BS). Hence, all configurations use roughly 70% of the
BRAM resources, whilst the FlipFlops and the LUTS (look-
at-tables) are not critical.

Performance results have been measured as the number
of frames that can be processed per second (FPS). Table II
lists the FPS achieve by the hardware accelerator according
to the number of PEs instantiated and the configuration of
the clock frequency. In this sense, the fastest clock frequency
is really an overclocked version of the slowest clock. In this
regard, the hyperspectral operators that have been described
with HLS were configured for a clock frequency of 100MHz,
so the Vitis HLS tool gets better scheduling and binding of
hardware resources, which means less hardware resources.

TABLE II
FPS ACHIEVED BY THE DIFFERENT VERSIONS OF THE HW-LBL-FAD

ACCELERATOR.

PEs 1 2 4 5 8 10 16 20

100 MHz 84 169 338 424 592 697 948 1077
143 MHz 130 259 518 606 900 1055 1423 1609

Then, the resulting architecture is overcloked with a clock
frequency of 143MHz. Performance results draw a linear
behavior, i.e. the performance scales accordingly with the
number of PEs. In addition, the fastest versions (143MHz)
achieve better performance results, roughly 40%, than the
slowest ones (100MHz). It is worth mentioning that a higher
clock frequency, such as 200MHz, is not possible because
the synthesis tools are not capable of fulfilling the timing
restrictions for this architecture.

Considering the features of the employed hyperspectral
camera, the Specim FX10 has a maximum frame rate of 327
FPS, each frame or captured line being 1024 pixels with 224
bands (full range) or/and 514 FPS for 1024 pixels and 140
bands per pixel [46]. On top of that, the smallest version of
the HW-LbL-FAD accelerator capable of processing the data
that comes from the image sensor is the one with 4 PEs and
the clock frequency configured at 143 MHz. On the basis of
the results listed in Table I and II and the runtime requirements
of the hyperspectral camera, the proposed architecture fits even
in a smaller ZynQ device (XC7Z014S), which is also based
on Xilinx’s Artix FPGA architecture.

Fig. 6. Power trade-off of different versions of the HW-LbL-FAD accelerator.

Figure 6 graphically shows the power consumption obtained
by the FPGA-based implementation for several versions of the
accelerator on a ZynQ-7020 device. From the point of view
of energy consumption, the proposed architecture is highly
efficient (right vertical axis, light and dark blue bars), ranging
from 0.5 watts, when a PE is instantiated, to 1 and 1.3 watts,
when the architecture instantiates 20 PEs in 100MHz and
143MHz, respectively. The consumption of sensed data draws
an exponential behavior instead of a linear, because of the
number of hardware resources and clock regions that must be
fed. Despite these good results, the power consumption is not
completed due to the hardware accelerator depends on other
resources, such as a DDR controller. For instance, the energy
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TABLE III
DATA SET SIZES AND PROCESSING TIME OF THE STATE-OF-THE-ART AND

THE HW-LBL-FAD DETECTORS.

Proposal Data Set Lines Block Size Bands Freq. (MHz) Time (s)

[47] HyMap 614 512 126 200 1.09
WTC 614 512 224 200 2.71

[48]
HyMap 100 300 126 100 0.375

Hydice Forest 64 64 169 100 0.062
Hydice Urban 80 100 175 100 0.124

[49]

San Diego 100 100 189 200 0.528
Urban-Beach 1 100 100 207 200 0.553
Urban-Beach 2 100 100 191 200 0.513
Urban-Beach 3 100 100 205 200 0.553
Urban-Beach 4 150 150 188 200 1.176

EI Segundo 250 300 224 200 7.856

ours Drone 825 1024 160 100 0.76
(ours) 143 0.51

TABLE IV
SUMMARY OF AVAILABLE HARDWARE RESOURCES OF THE DEVICES USED

IN THE STATE-OF-THE-ART AND THE HW-LBL-FAD.

Device (Proposal) BRAM18K DSP48E FlipFlops LUTs Price (C)
XC7VX980T ([48]) 3,000 3,600 1,224,000 612,000 30,949.10
XC7VX690T ([47]) 2,940 3,600 866,400 433,200 16,577.93
XC7K325T ([49]) 890 840 407,600 203,800 2,103.98
ZC7Z020 (ours) 280 220 106,400 53,200 154.70

budget is increased by 2.3 watts when all components are
assembled into a TE0720 SoC module.

The power efficiency in terms of FPS per watt (brown and
yellow series) is also shown in Figure 6. The information that
draws this figure is too relevant for applications under power
budget constraints, such as applications embedded in UAVs
to onboard real-time processing. In this kind of applications,
it is essential to extend the battery life due to unknown or
unplanned scenarios, in which extra consumption is necessary
to continue the mission. For example, an unexpected gust of
wind means stabilizing the drone by increasing the speed of
its motors, and hence, the energy consumption is greater than
in a regular scenario. In this sense, this figure of merit can
help to schedule a mission with the guarantee of a successful
completion of the mission. Although the implementation at
the highest clock frequency is slightly greater than the slower
one, it is counterbalanced by the number of FPS processed.
Therefore, the relation FPS/W is better for the fastest version
(143MHz) of the proposed accelerator.

V. DISCUSSION

The performance and hardware resource utilization of the
HW-LbL-FAD algorithm has been compared with three state-
of-the-art anomaly detectors also implemented on reconfig-
urable hardware. All of these detectors have been particularly
developed for the 7-series FPGAs from Xilinx. In [47], the
RX algorithm, optimized by a streaming background statis-
tics approach, has been developed in a Kintex-7 XC7K325T
FPGA (KC705 Evaluation Kit). Another interesting anomaly
detection algorithm is the Collaborative-Representation-Based
Detector (CRD), which has been implemented on a Virtex-
7 XC7VX980T FPGA in [48]. Finally, the anomaly detector
presented in [49] is based on morphological reconstruction
and a simplified guided filter (Fast-MGD) that has been
implemented on a Virtex-7 XC7VX690T.

Each of the aforementioned state-of-the-art anomaly detec-
tors uses its own dataset, which are listed in Table III. The size
of each hyperspectral cube is defined by the number of lines
(Y-spatial axis), block size (X-spatial axis) and the number of
bands (spectral axis). The clock frequency of each solution and
the time to process the hyperspectral cube are also shown in
Table III. In addition, the HW-LbL-FAD detector also uses its
own data set, which corresponds to the sensed by the custom
UAV described above. Due to the variety of data sets, the time
comparison has been done by the number of elements within
the hyperspectral cube regardless of the anomaly detector,
defined by the multiplication of the two spatial axis and the
spectral one. Figure 7 graphically shows the time (right vertical
axis, light blue bars) required to compute the number of
elements of the hyperspectral cube (left vertical axis, dark blue
bars). In addition, Figure 7 also draws the number of elements
processed per second (right vertical axis, orange line). It is
worth mentioning that the proposed architecture has a better
time performance than the other proposals; the HW-LbL-FAD
detector processes five and seven times more data than the
second better proposal ([47]) in its slowest (100MHz) and
fastest (143MHz) versions, respectively. Although proposals
presented in [48] and [49] employ tiny hypersepectral cubes,
both achieve worse time-performance balance.

[47] [48] [49] ours
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Fig. 7. Element-time processing trade-off of different state-of-the-art anomaly
detectors and the HW-LbL-FAD detector.

From the point of view of hardware utilization in terms
of FPGA technology, Table V shows the hardware utilization
by each anomaly detector in number of resources an its
percentage according to the device and the data set. Perhaps,
this table misleads the reader when try to interpret it, because
one can observe that the state-of-the-art detectors use a small
percentage of available hardware resources. However, this is
not the case, the state-of-the-art proposals have selected large
FPGA devices that make their results seem very promising,
but the fact is that most implementation do not fit in a
cost-optimized FPGA. The use of mid-range and large-range
devices (Kintex and Virtex architectures, respectively) instead
of cost-optimized ones (Artix architecture) introduces a new
dimension to a project: the cost of the final product. Table IV
displays the price of each FPGA device and the summary of
the number of available hardware resources. The architectures
based on Virtex-7 devices, [48] and [49], have a high economic
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TABLE V
HARDWARE UTILIZATION OF STATE-OF-THE-ART AND HW-LBL-FAD ALGORITHMS.

Proposal Device Data set BRAM18K DSP48E FlipFlops LUTs Freq. (MHz) On-chip Power (W)

[47] XC7VX690T HyMap 240 (26.97%) 265 (31.55%) 28,245 (6.93%) 21,730 (10.66%) 200 0.641
WTC 284 (9.47%) 459 (12.75%) 43,544 (3.56%) 33,997 (5.56%) 200 0.897

[48] XC7VX980T
HyMap 4 (0.13%) 1064 (29.56%) 772,164 (63.09%) 269,751 (44.08%) 100 2.72

Hydice Forest 3 (0.10%) 460 (12.78%) 277,048 (22.63%) 140,362 (22.93%) 100 1.333
Hydice Urban 3 (0.10%) 580 (16.11%) 414,673 (33.88%) 146,977 (24.02%) 100 1.619

[49] XC7K325T

San Diego 216 (7.35%) 12 (0.33%) 49,964 (5.77%) 33,969 (7.84%) 200 0.614
Urban-Beach 1 282 (9.59%) 12 (0.33%) 57,962 (6.69%) 43,890 (10.13%) 200 0.687
Urban-Beach 2 198 (6.73%) 12 (0.33%) 46,370 (5.35%) 31,681 (7.31%) 200 0.593
Urban-Beach 3 282 (9.59%) 12 (0.33%) 57,929 (6.69%) 43,874 (10.13%) 200 0.686
Urban-Beach 4 282 (9.59%) 12 (0.33%) 58,593 (6.76%) 44,906 (10.37%) 200 0.691

EI Segundo 525 (17.86%) 12 (0.33%) 83,713 (9.66%) 67,591 (15.60%) 200 0.911

ours ZC7Z020 Drone 197 (70.36%) 166 (75.45%) 23,071 (21.68%) 23,493 (44.16%) 100 0.7
(ours) 143 1.077

cost that may be unaffordable for embedded systems, whilst
the one based on a Kintex-7 device has a better price but its
performance is so far to process large hyperspectral cubes.
However, our proposal is a low-cost solution that exploits
the FPGA technology as much as possible, obtaining the best
trade-off between performance and cost.

Analysing the state-of-the-art architectures, we can observe
that, like our proposal, [47] and [48] use fixed-point precision
instead of floating-point notation, because this arithmetic is
more suitable for FPGA technology providing better results.
By contrary, [49] adopts floating-point arithmetic, whose
performance is the worst of the evaluated proposals. On
top of that, the FPGA-based architecture presented in [47]
instantiates several FIFOs that play the role of data buffering
and, hence, the BRAM resources are notably present in the
summary of hardware utilization. Unfortunately, this archi-
tecture does not provide a high parallelism, despite having
enough hardware resources to do so. The main problem is
that the Initial Interval (II) between pixels is roughly 17
cycles, which is an aggravating factor in performance terms.
In [48], the proposed architecture is not explained and, hence,
it cannot be deeply analyzed. It can be deduced that authors
try to avoid the use of BRAM and implement their solution
by using other faster resources for data buffering purposes
(FlipFlops and LUTs). Finally, the architecture described in
[49] has been implemented by the use of HLS in which the
stages are pipelined. However, designing a fully HLS-based
architecture is not a good idea, due to current tools are not able
to decouple all data dependencies. In this sense, our FPGA-
based architecture employs a mixed strategy by instantiating
HLS-based modules connected through FIFOs, which has been
generated as BRAMs, and VHDL-based FSM to synchronize
the stages and tasks of the HW-LbL-FAD algorithm. This fact
features our solution an high degree of parallelism, where the
II is 1 cycle, except in the first pixel of those tasks that depend
on a previous one in which II is the number of bands, i.e. 160
cycles to start processing data.

From the energy point of view, Table V lists in its last
column the on-chip power depicted in watts of each proposal,
which has been estimated with the Xilinx Power Estimator
tool (XPE) due to the aforementioned proposals do not provide
this information. For the sake of clarity, Figure 8 draws the
elements per second (dark green bars) and the processed
elements per watt (light green bars). We can conclude that our

solution beats the other state-of-the-art proposals in the power
trade-off, where slowest and fastest version of the HW-LbL-
FAD are between 5 and 107 times better than the anomaly
detectors presented in the literature. It is worth mentioning
that both versions of the HW-LbL-FAD detector have a similar
number of processed elements per watt (see Figure 8).

[47] [48] [49] ours
E
le
m
e
n
ts

Fig. 8. Power trade-off of state-of-the-art and HW-LbL-FAD detectors.

VI. CONCLUSION

The main challenge faced in this work was the design of
a low-power, energy efficient solution for a complex, multi-
staged anomaly detection algorithm for hyperspectral imaging
targeting a reconfigurable logic platform. Together with the
resource and power budget constraints, high performance
requirements were also mandatory to be met.

The initial implementation of the core set of hyperspectral
operations is inherited from previous works [32], [34] where
the suitability of the FPGA technology for this type of
applications was tested. So, this strategy has therefore saved a
significant amount of time and effort, allowing the authors to
focus on the enhancement of the performance and the design
of a datapath and control logic that enabled the time-sharing
of the hardware modules and the optimal use of the resources.
We also have gone one step further and provided minimal
functional modifications to the operators so they became
versatile and easily reused during the different stages of the
algorithm. As a result, the core set of hardware hyperspectral
operators not only is valid for image compression [32] but for
anomaly detection task whilst not incurring in any overhead.
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The reuse of resources was mandatory given the features of
the FPGA platform the accelerator has been deployed on. On
the one hand, the cost of the solution must be kept within a
reasonable margin. The lower the cost of the reconfigurable
chip, the lower the number of DSPs or in-chip memory
available. On the other hand, this proposal aims to target
embedded hyperspectral imaging processing systems such as
the ones on board of UAVs or other autonomous, battery-
powered platforms. In this sense, the size of the reconfig-
urable chip, the number of clock regions and the working
clock frequency have a direct impact on energy consumption.
Thus, the proposed architecture contributes to overcome these
challenges by performing the hyperspectral operations with
the same hardware accelerators through the different stages by
fundamentally modifying the of routing the data at run-time.

In terms of detection performance, the HW-LbL-FAD
achieves the same precision that its software version. It means
that the accuracy of the anomalous pixel detection is high and
greater than that achieved by the state-of-the-art algorithms.
Regarding the time processing trade-off, the proposed archi-
tecture processes large hyperspectral cubes in a short period
of time with a small power budget compared to the state-
of-the-art proposals. Moreover, the production cost of our
architecture, by using FPGA devices, is attractive because of
its low-cost.

Although we focus in this work on a high data-rate scenario
characterized by a push-broom scanner mounted on a UAV, the
conclusions drawn from this work can be extrapolated to other
fields where remotely sensed hyperspectral images ought to
be processed in real time (e.g. spaceborne missions that carry
space-grade FPGAs).
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line-by-line fast anomaly detector for hyperspectral imagery,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 57, no. 11, pp.
8968–8982, 2019.

[31] M. Dı́az, “A new approach for the effective processing of hyperspectral
images: application to pushbroom-based anomaly detection and com-
pression systems,” Ph.D. dissertation, Universidad de Las Palmas de
Gran Canaria, 2021.

[32] J. Caba, M. Dı́az, J. Barba, R. Guerra, and J. A. d. l. T. a. López, “Fpga-
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