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Abstract: Hyperspectral imaging opens up new opportunities for masked face recognition via1

discrimination of the spectral information that are obtained by hyperspectral sensors. In this work,2

we present a novel algorithm to extract facial spectral-features from different regions of interests by3

performing computer vision techniques over the hyperspectral images, particularly Histogram of4

Oriented Gradients. We have applied this algorithm over the UWA-HSFD dataset to extract the facial5

spectral-features and then a set of parallel Support Vector Machines with custom kernels, based on the6

cosine similarity and euclidean distance, have been trained on fly to classify unknown subjects/faces7

according to the distance of the visible facial spectral-features, i.e. the region that are not behind a8

face mask or a scarf. The results draw up an optimal trade-off between recognition accuracy and9

compression ratio in accordance with the facial regions that are not occluded.10

Keywords: facial recognition; hyperspectral compression; hyperspectral imaging; biometrics; SVM;11

computer vision12

1. Introduction13

Face recognition is a special branch of biometrics to identify faces and it is considered an easy14

task for humans but a challenge when a machine is employed to the automatic face recognition.15

Traditionally, this process has been performed through an analysis of the face features in which16

computer algorithms pick out specific, distinctive details about a person’s face. These details, such17

as distance between the eyes or mouth, are then converted into a mathematical representation (face18

encoding vector) and compared to other faces previously collected in a database [1]. In recent times,19

computer vision applications have been highly engaged via deep learning techniques. On this basis,20

most recent works advocate for the use of neural networks for face recognition, whose results are very21

promising [2].22

Although face recognition is no longer considered a challenge due to the good results obtained23

by the variety of techniques and algorithms published in the scientific community, this topic is back24

in the limelight when the scenario is not the usual one, e.g. in scenes where some details of the face25

are hidden. In this sense, the outbreak of COVID-19 pandemic has introduced a new way of life26

into our lives, e.g. the use of face masks in public and private places, such as public transport, is27

mandatory in some countries or workplaces according to restrictions imposed by health authorities,28

mostly based on the status of virus transmission. However, the use of face masks compromises security29

due to criminals can hide their face under them as well as we are not able to distinguish the person30

behind the mask. This fact opens up a new challenge in face recognition topic, where traditional31

state-of-the-art approaches lack essential information, hidden behind masks, that would allow them to32

achieve successful results. It is worth mentioning that this challenge does not born out of COVID-19,33

before it appeared, people usually wear clothing accessories, such as scarves or sunglasses, that results34
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in the same effect; the face is partially hidden. Thus, new facial features must be extracted form faces35

to supply such lack of information, e.g. encoding micro-expressions extracted from the regions of36

interest of a face, as presented by Y.J. Liu et al. in [3], or extending the RGB information provided37

by conventional cameras through the use of wider spatial information obtained from hyperspectral38

sensors [4].39

Hyperspectral imaging initially found its applications for remote sensing due to the richness of the40

spectral information that allows to apply techniques with greater visibility in the thorough analysis of41

land surfaces by means of the identification of visually similar materials and the estimation of physical42

parameters of many complex surfaces [4]. However, apart from the spectral information captured43

by hyperspectral sensors, it complements the data information collected by traditional sensors, such44

as RGB cameras. This kind of sensors have been improved in the last decade by reducing their cost45

and increasing in the imaging speed, which in turn has opened up the hyperspectral imaging to other46

applications, making it more popular than ever in recent decades [5] [6]. Hyperspectral imaging is47

widely used for a large variety of applications such as precision agriculture, forestry, city planning,48

urban surveillance and homeland security, chemistry, forensic examination and face recognition.49

In recent years, masked face recognition has gained great importance due to COVID-19, which50

has been reflected in the number of articles published on this topic [7]. In this sense, there are many51

works on face mask detector to trigger an alarm when detecting a person who does not wear a mask52

or to analyse the degree to which health restrictions are enforced. On this basis, deep learning models53

has been used to automate the process of face mask detection. G.J. Chowdary et al. [8] have employed54

transfer learning of InceptionNet through augmented techniques to increase the diversity of the55

training data, as well as increase the performance of the proposed model. M. Loey et al. [9] have56

developed a hybrid deep transfer learning model that consists of two components for the detection of57

face mask; a component for feature extraction using ResNet50 [10] and a second component to classify58

face mask using decision trees and ensemble algorithm.59

YOLO-based algorithms have also been used for face mask detection purposes, in which YOLOv360

is considered a major breakthrough in terms of the trade-off between detection precision and speed. S.61

Singh et al. [11] propose an efficient real-time deep learning-based technique to detect masked faces by62

using YOLOv3 architecture that has been trained by a small custom dataset, in which authors have63

provided the necessary labels and annotations. T. Q. Vinh and N. T. N. Anh [12] present an algorithm64

composed by a Haar cascade classifier that detects the faces in a picture and whose output feeds the65

YOLOv3 algorithm that determines whether a person wears a mask. To do so, the YOLOv3 has been66

previously trained with the MAFA dataset. Other works go one small step further and not only detect67

whether a person wears a face mask. P. Wu et al. [13] propose a YOLO-based framework to monitor68

whether people wear mask in a right mode, where the feature extractor, feature fusion operation and69

post-processing techniques are all specifically designed. Whilst, X. Su et al. [14] propose an efficient70

YOLOv3 algorithm, using EfficientNet as the backbone feature extraction network and reducing the71

number of network parameters, for mask detection and classify them into qualified masks (N95 and72

disposable medical masks) and unqualified masks (cotton, sponge, scarves, . . . ).73

The research efforts in masked face recognition have been increased since the COVID-19 pandemic74

by extending previous works related to face recognition or occluded face recognition methods. One of75

the approach adopted to face this challenge consists in restoring the part hidden by the mask and then76

use a face recognition alternative. In this sense, N. U. Din et al. [15] break the problem into two stages;77

firstly a binary segmentation of the mask region is performed and then the mask region is replaced78

with face textures retaining the global coherency of face structure. To do so, authors use a GAN-based79

network with a discriminators that learns the global structure of the face and other discriminator that80

comes in to focus learning on the deep missing region. Unfortunately, this kind of solutions result in81

failures cases when the map module is unable to produce a reasonable segmentation map of the mask82

object, i.e. the mask object are very different than those in the dataset. This kind of approaches follow83

the same strategy than older works in which restoration process from a gallery takes place [16] [17].84
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Other approaches only employ the visible part of the masked faces, i.e. these works extract the85

facial features from the upper part of the face or apply a filter to remove the mask area. W. Hariri86

[18] extracts deep features from the unmasked face regions through the last convolutional layer of87

three pre-trained deep CNN (VGG-16, AlexNet and ResNet50). Then a bag-of-features paradigm is88

applied to quantize the obtained features and, thus, a slight representation is obtained to, finally, feed89

a Multilayer Perceptron, that performs the classification process. F. Boutros et al. [19] propose an90

Embedding Unmasking Model (EUM) operated on top of existing face recognition models, such as91

ResNet50 [10] or MobileFaceNet [20]. These models do not require any modification or extra training.92

To do so, authors propose a loss function to guide the EUM during the training phase, minimizing and93

maximizing the distance between genuine and impostor pairs, respectively.94

The lack of masked faces in well-known datasets has been supplied by extending them with fake95

versions that contain masks, i.e. synthetic masked faces are generated from existing faces. Moreover,96

some proposals also enrich the datasets through data augmentation to make variations in the images,97

such as cropping, flipping or rotation. Thus, A. Anwar and A. Raychowdhury [21] combine the98

VGG2 dataset [22] with augmented masked faces and train the model following the original pipeline99

described in FaceNet [23], this approach is also able to determine a masked face on the basis of the100

extracted features.101

Despite the fact that hyperspectral imaging has not played a major role in face recognition because102

of other techniques have been very successful, there are several works with a variety of techniques103

that address this problem. M. Uzair et al. [24] use an algorithm based on spatiospectral covariance104

for band fusion to merge hyperspectral images into one, and propose the Partial Least Squares (PLS)105

regression algorithm to achieve face recognition and classification. In addition, authors perform band106

selection experiments to find the most discriminative bands in the visible and near infrared response107

spectrum. This band selection is followed by S. Bhattacharya et al. [25], they propose a face-specific108

band selection framework to identify the optimal band set that results in satisfactory face recognition109

performance. In the same line, Q. Chen et al. [26] emphasize on designing an efficient band selection110

method to reduce the spectral information without loss of recognition accuracy. V. Sharma et al.111

[27] propose hyperspectral CNN for image classification and band selection, where each band of the112

hyperspectral image is treated as a separate image. The architecture of the CNN is composed by 6113

layers: 3 convolutional layers followed by 2 fully connected layers which are then connected to C-way114

softmax layer.115

Pan et al. [28] study the reflectance of skin tissues for face recognition by analyzing near infrared116

spectral bands (0.7µm - 1.0µm), which vary from persons, thus these bands are employed for human117

recognition. In this sense, the problem of luminance affecting face recognition is decreased by manually118

selecting five facial regions of interest: hair, forehead, right and left cheeks and lips. However, the119

strong aspect of this work is that it can be used to recognize faces in the presence of changes in facial120

pose and expression. They also fuse the spatial information of the hyperspectral image, where each121

pixel in the fusion image is selected from a specific band in the same position, thus this method122

transforms a 3D hyperspectral image cube into a 2D image. In contrast, W. Di et al. [29] apply three123

techniques to analyze the efficiency over a different set of bands, from the whole bands to a single124

band, or, using a subset of bands. Thus, the three techniques comprise whole band (2D)2 PCA, single125

band (2D)2 PCA with decision level fusion, and band subset fusion-based (2D)2 PCA, in which the126

latter two methods follow a simple efficient decision level fusion strategy. Authors conclude that the127

set of bands from 0.53µm to 0.59µm provides the most significant feature information since such bands128

correspond to the activity of human skin and absorption and reflection characteristics of carotene,129

hemoglobin and melanin.130

In this work, we present a novel algorithm for facial features extraction (HyperFEA) from131

hyperspectral images, using a combination of computer vision techniques through histogram of132

oriented gradients (HOG) and hyperspectral transformations, to face recognition. In addition, a set133

of adaptive and parallel Support Vector Machines (AP-SVM) has been designed to classify unknown134
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individuals. Thus, the extracted spatial information supply the lack of information that face masks or135

clothing accessories occlude. To the best of authors’ knowledge, this is the first time computer vision136

techniques have been applied to hyperspectral images for that purpose. The main contributions of this137

work are listed as follows.138

• An algorithm that uses computer vision techniques to extract facial regions of interests for face139

recognition of hyperspectral images.140

• A significantly compression of the spatial information obtained from the facial regions of interest141

that maintains the uniqueness of the face hyperspectral signature.142

• An adaptive and parallel Support Vector Machine tree to distinguish unknown individuals using143

only the regions of interests that are visible.144

• An evaluation of the proposed model to analyze the recognition accuracy and an analysis of the145

similarity results.146

The rest of the paper is organized as follows. In Section 2, the characteristics of the HyperFEA147

algorithm used in this work are introduced in detail to understand the extraction process of face148

features from hypersperctral images and the set of SVMs is also depicted. Section 3 describes the149

hyperspectral data sets, the performance assessment metrics used to evaluate the accuracy of the150

results provided by the proposed algorithm and shows the experimental results. Section 4 compares151

the results with the ones obtained for other state-of-the-art proposals. Finally, Section 5 draws up the152

main conclusions of this work.153

2. Materials and Methods154

2.1. Extracting Spectral Information155

Feature extraction is a crucial stage in face recognition, whose main objective is to get a set156

of features that clearly represent a person. Typically, the set of features is composed by key facial157

attributes, such as eyes, mouth or nose, and/or the distance between them. From these features, a face158

encoding vector is generated and used to determine a similarity measure with other individuals in the159

recognition process. Unfortunately, the feature extraction process becomes more complicated when160

people wear face masks or clothing accessories, i.e. part of key facial features are hidden by them. This161

fact causes the existing face recognition methods to be adapted in order to extract representative facial162

features. On this basis, we propose the use of spectral information to complete the information lost.163

Thus, the proposed algorithm, HyperFEA extracts the relevant spatial information from hyperspectral164

faces. This algorithm has been developed for providing a good recognition accuracy by extracting facial165

regions of interests as well as providing a good compression performance of the spatial information166

of such regions. Additionally, the algorithm follows an unmixing-like strategy that selects the image167

pixels that are potentially more useful.168

The process performed by the HyperFEA algorithm to hyperspectral images consists of four main169

stages, which are: (1) facial landmarks stage, which extracts the points where a face is located and170

optionally the face is rotated to horizontally align it; (2) extracting facial regions of interests (ROI)171

where the unused spatial information is removed; (3) a spectral transform; (4) a coding stage. The172

HyperFEA spectral transform selects the most different pixel and the average pixel of each facial ROI.173

Figure 1 graphically shows these four stages, as well as the data shared between them.174

2.1.1. Algorithm notations175

In the following, HF = {HIi, i = 1, ..., ns} is a sequence of ns hyperspectral frames, HIi, comprised176

by nb spectral bands that represents a hyperspectral image. Whereas HI’ is the aligned hyperspectral177

image that is obtained from HI whose maximum deviation of the angle formed by the eyes is set by β178

(depicted in degrees). L = [l1, l2, ..., lα] represents the facial landmark points, where α is the number of179

landmarks. Whilst V = [V1, V2, ..., Vp] depicts the position of the points that delimits the facial regions180
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Figure 1. Diagram of the HyperFEA algorithm stages.

of interests extracted from L, where p is the number of regions; i.e. Vi corresponds to the points that181

set the limits of the i facial ROI. HRi represents the i hyperspectral region whose location is stored182

in Vi. The average pixel, also called centroid, is represented by the symbol µ̂, while ê represents the183

most different hyperspectral pixel extracted from such region. Each facial ROI can be represented as184

Ri = (ê, µ̂).185

Therefore, in addition to the hyperspectral image containing the face, the HyperFEA algorithm186

uses two main input parameters to extract the facial ROI and the spectral information.187

• Number of bands (nb). This parameter denotes the number of bands that contains the hyperspectral188

images. It is provided to the algorithm in order to consider the whole spectral information.189

• Degrees threshold (β). It determines a threshold of degrees up to the hyperspectral image must be190

rotated, i.e. all bands are rotated until all of them fulfil this requirement.191

Algorithm 1 HyperFEA algorithm.

Inputs:
HI = [b1, b2, ..., bnb], nb, β

Outputs:
R = [R1, R2, ..., Rα]; Ri = (µ̂i, êi)
Algorithm:

1: Face Alignment: HI’ = [b1, b2, ..., bnb];
2: Facial Landmarks: L = [l1, l2, ..., lα];
3: Location of Facial ROI: V = [V1, V2, ..., Vp];
4: for i in V do
5: Get hyperspectral region: HRi ← getRegion(HI’, Vi);
6: Centroid or average pixel: µ̂i;
7: Centralization: C = HRi − µ̂i;
8: for j in HRi do
9: Brightness Calculation: bj = c′j · cj;

10: end for
11: Maximum Brightness: êi = argmax(bj);
12: Save Spatial information: Ri ← (µ̂i,êi);
13: end for
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2.1.2. HyperFEA algorithm192

The HyperFEA algorithm is described in detail in Algorithm 1 for a hyperspectral image, HI. Firstly,193

the hyperspectral face is rotated (H I′) and, then, the facial landmarks are extracted from it, L, in lines194

1 and 2, respectively. From the location of the face landmarks, the algorithm infers the facial ROI by195

obtaining the matrix V that contains the area of each region (Vi), i.e. Vi represents the cloud of points196

that delimits the ith facial ROI. The hyperspectral facial ROI is obtained from H I′ by cropping the197

image according to the set of points stored in Vi (line 5 of Algorithm 1). Thus, the algorithm calculates198

the centroid and the brightest pixel of each hyperspectral facial ROI, HFi. The average pixel or centroid199

(µ̂i) is computed in line 6. Afterwards, the facial ROI is centralized by subtracting the average pixel to200

the original spectral information, i.e. each hyperspectral pixel that contains the facial ROI is subtracted201

by the average pixel (see line 7 of Algorithm 1). In addition, the most different pixel is extracted in202

line 11. In the remainder of this document, it is referred as brightness of a pixel. In this process, the203

dot product of each frame pixel within the centralized facial ROI with itself is first computed (lines 8204

till 10 of Algorithm 1), whose the maximum value corresponds to the highest brightness (êi). Finally,205

both spatial features, µ̂i and êi, are stored in the matrix R in line 12, which contains the whole spatial206

information extracted from a hyperspectral face and it will be used to compare it with other matrix207

and determine its similarity.208

2.1.3. Face alignment and extracting facial landmarks209

Face alignment is an early stage of the modern face recognition pipeline that increases the210

recognition accuracy, which is optional in our proposal. Figure 2 shows the steps performed in the211

face alignment process. The first step is to detect the location of the eyes to extract the center of them212

and imaginatively draw a line between the two centres. Thus, the angle formed by the horizontal213

line with the previously one (ρ) gives the degree of inclination of the face. From this angle we can214

determine the rotation degrees by applying inverse trigonometry functions (arc cosine function), the215

result in degrees determines the angle to rotate the image, whenever its value is greater than β, i.e.216

the threshold degree parameter. Once the image is rotated, the algorithm checks that the face is217

horizontally aligned by a new iteration, it means the rotated image is the new input (orange arrow218

of Figure 2). In general, the constraint is fulfilled in the first iteration, which is an important issue219

when working with hyperspectral images, due to the computational cost required; the operations of220

the rotation stage are applied to all bands, i.e. the face alignment stage is repeated at least nb times.221

Thus, the hyperspectral face is horizontally aligned, H I′ (line 1 of Algorithm 1).222

Rotated imagenb b
an

ds

Base image

Figure 2. Face alignment process.

From a trigonometry point of view, the algorithm draws a rectangular triangle to calculate the223

angle between eyes (see multi-color triangle of Figure 2), whose sides corresponds as follows: line224

between the centers of the detected eyes (hypotenuse, blue line), horizontal line between the center225

of the detected eyes (adjacent, red line) and the line that close the triangle (opposite, green line). The226

length of the three lines are calculated with euclidean distance algorithm from the 2D points of the227

three edges of the triangle. Then, the cosine rule (see Equation 1) is performed to obtain the ρ angle.228

cos(ρ) = (b2 + c2 − a2)/2bc (1)
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The face alignment process can be carried out in two different modes depending on the speedup229

of the hyperspectral sensor to capture the images. The first mode considers each spectral band230

independent of the others, even if the captured face moves during the exposure of the picture taking,231

the alignment process corrects such small deviations. Meanwhile, the second mode takes as reference232

the first spectral band, which is aligned, and from the degree to which it is aligned, the rest of the233

bands are rotated. This mode is only suitable for those hyperspectral sensors whose time of exposure234

is small, i.e. it can be omitted. Thus, the facial alignment process is independent of the hyperspectral235

sensor speedup feature, but it is mandatory for the hyperspectral sensors with long time of exposure.236

After the horizontal facial alignment phase, the next step is to extract the facial landmarks by237

providing a set of cloud that contains 2D points. These points represent and localize salient regions of238

the face, such as eyes, eyebrows or nose (see Figure 3(b)). The process is divided in two steps; firstly,239

the face must be localized in the image and then the key facial structures are detected. This method240

is widely used in RGB or gray scale images, so it is suitable for hyperspectral images, where both241

operations, face localization and facial landmark detection, are performed using the first spectral band.242

The algorithm considers that the rest of bands are aligned, either because the facial alignment process243

has been applied or because the hyperspectral sensor is able to capture all the spatial information in a244

shot. The result of this stage is a dictionary of lists, L, where the location of α salient regions are stored245

(line 2 of Algorithm 1).246

(a) (b) (c)

Figure 3. Extracting facial regions of interest from facial landmarks. (a) Base image. (b) Facial
Landmarks. (c) Facial regions of interest.

2.1.4. Extracting facial regions of interests247

The next stage is to obtain the location of facial ROI (line 3 of Algorithm 1). This process is similar248

that the one applied by F. Becattini et al. in [30], where 36 facial ROI are estimated. The solution249

proposed extracts 38 facial ROI from the location of the facial landmarks (L), which were obtained in250

the previous stage (see Figure 3(c)). The facial regions are represented by a set of 2D points, which251

corresponds to the x-axis and y-axis position within the hyperspectral image (H I′). The 2D points that252

delimit the facial ROI are stored in a list (V ) that will be used for the spectral transform process.253

In turn, hyperspectral images have a problem caused by the position of the hyperspectral sensor,254

the light that falls on the face and the shape of the face itself, i.e. the quality spatial information255

depends on the reflection of the light over the surface of an object, a face in our case, and it also256

depends on the position of the hyperspectral sensor, it means the regions located in front of the sensor257

will have good quality of spatial information. Thus, the shape of the face is not flat, it seems a balloon258

in which the luminosity does not produce a good reflection in all parts. This fact is the reason that259

some facial ROI are divided in order to get useful spatial information instead of including them as260
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(a) (b) (c)

Figure 4. Quality of spectral information related to each facial ROI according to the visible parts. (a)
Facial ROI no masked. (b) Facial ROI with mask/scarf. (c) Facial ROI with sunglasses and mask/scarf.

a single piece, e.g. the forehead is broken into ten subregions, where the lateral subregions do not261

provide good spatial information. Figure 4 shows the biometric areas of interest of a face that has been262

extracted in accordance with the visible face parts. In addition, the quality of spatial information of the263

collected facial ROI is also highlighted and classified as good (green), mid (yellow) and poor (red).264

It is worth mentioning that clothing accessories and/or facial mask hide part of the face, so this265

work only takes the upper facial ROI for the experiments; from ten till nineteen regions. Figure 4(b)266

and 4(c) highlight the facial ROI considered, using the same colors that were used to mark the quality267

of the spatial information, whilst regions that are omitted are darkened.268

2.1.5. Spectral transform269

The spectral transform has a twofold objective: it contains enough information to discriminate270

against people and the spatial information is reduced. The second feature directly depends of the271

number of regions of interests and the number of spatial information, i.e. the number of bands.272

Therefore, the HyperFEA transform sequentially selects the most different pixels (ê) and the273

average pixel or centroid (µ̂). For this purpose, a rectangular area of the hyperspectral image is274

extracted to apply a mask, which has been previously generated from the set of 2D points of the facial275

ROI that is being computed (Vi). Therefore, the result is a hyperspectral image where the pixels out of276

the ROI have a value of 0, so spectral operations do not consider such pixels. Then, from each facial277

ROI a centroid is extracted (µ̂i) (lines 6 of Algorithm 1) by computing Equation 2, where pk
x,y represents278

the pixel located in the kth band (spatial axis) at x,y position (x-axis and y-axis, respectively). The result279

is a hyperspectral pixel composed by nb bands whose values are the average value of each band.280

µ̂k =
∑

x=W,y=H
x=0,y=0 pk

x,y

NPixelsvalid
(2)

Afterwards, the hyperspectral facial ROI is centralized by subtracting the centroid, i.e. the281

subtraction operation is applied between each pixel in the ROI and the centroid (line 7 of Algorithm282

1). In turn, the most different pixel of such ROI (êi) is obtained by calculating the brightness of each283

pixel (lines 8 to 10 of Algorithm 1). The brightness is obtained by applying the l2 − norm vector284

normalization algorithm; it squares root of the sum of the squared element of the hyperspectral pixel.285

Then, the highest brightness pixel is selected (line 11 of Algorithm 1).286
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Figure 5 graphically shows the flow to extract the spatial information of the mid_lower_forehead287

facial ROI from a hyperspectral face. The algorithm extracts a rectangle that contains the hyperspectral288

pixels of the facial ROI to then apply a mask to crop the region, considering the pixels that are inside289

the region. Thus, the algorithm obtains the number of valid pixels and extracts the average value of290

each spectral band to build the centroid (µ̂mid_lower_ f orehead) and extracts the brightest hyperspectral291

pixel (êmid_lower_ f orehead). It is worth mentioning that the spectral information extracted of each facial292

ROI can be performed in parallel.293

nb bands

1. Crop rectagle that
contains the Facial ROI

2. Apply mask
(extracted from Vmid_lower_forehead)

3. Get Centroid

Facial ROI

(μmid_lower_forehead)^

4. Centralize Facial ROI5. Calculate brightness of
all hyperpixels of the Facial ROI

6. Select brigthtest pixel

(êmid_lower_forehead)

0 0 0 0 0 0 12 15 .......... 34 67 0 0 0 0 0 

0 0 0 0 0 0 0 0  3 .......... 55 53 0 0 0 0 0

         

0 443 21 114 999 ............. 3 43 22 22 0

.........

.........

Figure 5. Flow of spatial information extraction process.

2.2. A tree based on adaptive and parallel SVMs for face recognition294

Cascade of Support Vector Machines (C-SVM) has been introduced as an extension to classic SVM295

devoted to accelerate inference time by using an horizontal scaling strategy. The concept relies on296

the division of the problem into smaller problems, where each layer of SVMs is considered as a filter.297

This way, it is straightforward to get partial solutions leading towards the global optimum [31]. On298

this basis, the proposed solution leverages the advantages of C-SVM by proposing an adaptive and299

parallel layered-solution (AP-SVM). AP-SVM includes layers that may contain two or more SVMs,300

which are trained at run-time with the output of the previous layer. The output of one layer denotes301

the elements of the dataset the next layer of SVMs must be trained with. Since the size of the training302

dataset is getting smaller as the pipeline advances, overall latency of the process does not soar.303

Figure 6 shows the AP-SVM tree structure for face recognition purposes using hyperspectral304

images. Classification time is sped-up due to the parallelization, following the C-SVM approach. For305

example, in layer one there is one SVM per ROI and per SVM kernel used on this work. Besides the306

independent and concurrent processing of each ROI, the size of the problem is smaller which leads to307

reduced latency.308

Two kernels have been customized to obtain the closeness degree between the individual to be309

identified and the well-known persons in the dataset. AP-SVM uses the cosine similarity (i.e. computes310

the angle between two vectors) and euclidean distance (i.e. calculates the distance between two points).311

The cosine similarity is used to model the affinity in the reflectance realm whilst euclidean distance312

helps to model the spatial differences between concerning the morphology of the face.313

2.2.1. Layer 1: Centroid Classification314

The main goal of the first layer is to obtain a set of subjects that are close to the unknown individual.315

To do this, the problem is divided into as many SVMs as the number of facial ROIs used (horizontal316

division). In addition, the split is duplicated, in accordance with the number of kernels used (euclidean317

and cosine). The SVMs of this layer are previously trained and do not change during the classification318

process. The output of this layer is a list of potential candidates (PredE and PredC lists) composed by319
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Figure 6. AP-SVM tree for face recognition.

the subjects whom spatial signature for a particular region is the closest to the individual that is being320

classified.321

2.2.2. Layer 2: Flattened Centroid Classification322

Once the first list of candidates is extracted by layer 1, it is necessary to measure the distance323

of the complete spatial signature between all the candidates and the unknown individual. For each324

ROI, the centroid and brightest pixels are selected and flattened in a single spatial features vector.325

Then, two SVM (one for each aforementioned kernel) are trained during run-time with the flattened326

spatial information vector in parallel. Afterwards, classification of the individual takes place. This327

process depends on the output of the previous layer, so the SVMs are trained every time an outsider is328

classified (adaptive feature). As a result, the two SVMs predict two possible candidates set; the ones329

whose euclidean distance and cosine similarity are the shortest, respectively ([Se] and [Sc]). Whenever330

the size of the [Se] and [Sc] lists are not equal, they must be extended. Finally, the second layer of the331

AP-SVM extracts the top five candidates of both SVMs (Top5E and Top5C lists).332

This layer is also considered as decision layer. The unknown individual can be considered333

identified anytime the candidate obtained by both SVMs is the same after the first iteration (i.e.334

S_1 = S_a). This means that the candidate has the shortest cosine and euclidean distance. The second335

rule for direct candidate selection establishes that if the first two candidates output by the euclidean336

SVM are equal (i.e. S1 = S2) that must be the identification of the unknown individual.337

2.2.3. Layer 3: Brightest Classification338

If the unknown individual could not be identified so far, the last layer proposes a unique candidate339

based on the analysis of the brightest features. Therefore, two SVMs are trained with the Top5E340

and Top5C candidate lists using the brightest features solely. In this case, the brightest features are341

considered in the same pool for the euclidean and cosine SVMs because of the brightest can be repeated342

or located in different facial ROI.343
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3. Experimental Results344

In this section, the hyperspectral data used for evaluating the recognition accuracy of the proposed345

model is introduced. The hyperspectral dataset used in experiments has been provided by The346

University of Western Australia through a database that consists of 164 facial hyperspectral images of347

79 different subjects (UWA-HSFD), where 75 individuals are males and 4 females; of those 75 males,348

13 wear glasses, while in the case of females, only one wears glasses. The face database was sensed349

by CRI’s Varispec LCTF, equipped with a photon focus camera helping in adjusting exposure time,350

luminance adaption and CCD sensitivity. Image cubes were captured over 33 bands from 0.4µm to351

0.72µm with a difference of 0.1µm; each band is stored in separate files. Figure 7 shows an example of352

a subject’s face cube with the 33 bands [24]. The hyperspectral images have been organized in four353

sessions, i.e. the repeated faces have been taken on different days. Unfortunately, this dataset presents354

an important challenge; some subjects did not keep their head still during the process of capturing the355

image cube, so there are variations in the dataset.356

400nm 410nm 420nm 430nm 440nm 450nm 460nm 470nm 480nm 490nm 500nm

510nm 520nm 530nm 540nm 550nm 560nm 570nm 580nm 590nm 600nm 610nm

620nm 630nm 640nm 650nm 660nm 670nm 680nm 690nm 700nm 710nm 720nm

Figure 7. UWA-HSFD: Example of a subject’s face cube.

To extract the spectral signatures of the images using the proposal presented in this work, we357

have set the maximum error of the face horizontal alignment to one degree, which has been applied to358

all spectral bands. This configuration requires high computational costs; the extraction of a spectral359

signature has taken an average of 248 seconds on a i7-10710U CPU with 32GB of RAM and SDD, i.e.360

the process to obtain all spectral signatures has taken 9 hours and 47 minutes. It is worth mentioning361

that this stage can be optimized in performance terms; the horizontal alignment of each band can be362

carried out in parallel as well as each facial ROI could be independently processed.363

3.1. Partial results of the AP-SVM tree364

For the shake of clarity, this section describes through a case study the intermediate results of the365

AP-SVM, using the 19 facial ROI highlighted in Figure 4(b). The SVMs of the first layer are trained366

with the two first sessions, in which certain individuals appear in both sessions, thus the spectral367

information is doubled. The individual to recognize is the labeled as 1 by using the spectral signature368

of the third session. Figure 8 displays the confusion matrix obtained after the classification performed369

by the SVMs of the first layer over the unknown individual. In this example, there are fourteen370

candidates; the subject 1 is the one that the distance of the spectral information is smallest. The SVMs371

of this stage are trained in parallel and, hence, it requires high computational resources to optimize the372

time performance of the AP-SVM. Thus, this process takes up to 2 seconds.373

Although, the subject 1 contains more spatial features, we cannot discard other candidates that374

contains similarities. Thus, the second layer measures the entire spectral information providing two375

Top5 lists. In this case, the top of these lists are not equal neither the first and second item of the376

Top5 related to the Euclidean distance. Figure 9(a) and 9(b) display the confusion matrices using the377

euclidean and cosine custom kernels, respectively, which have been applied to the whole spectral378

signature. To obtain the list of candidates whose spectral signature is close to that of the unknown379
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Figure 8. Example of confusion matrix obtained after the classification of layer 1.

individual, the closest one is not considered in the next iteration. Thus, the list of candidates was380

obtained in the following order [2, 1, 1, 69, 27] and [1, 2, 78, 27, 27] for the euclidean and cosine kernel,381

respectively.382

The results draw differences between the two custom kernels, i.e. the candidates of the first step383

differs, the euclidean kernel stats that the unknown individual is the subject labeled as 2, whilst cosine384

kernel asserts that it is the subject 1, so the first rule to find out who is the unknown individual is not385

fulfilled. The second rule compares that the first and second candidates of the euclidean distance are386

the same, but this is not the case either.387

(a) (b)

Figure 9. Example of separated confusion matrix obtained after the classification of layer 2. (a)
Euclidean kernel. (b) Cosine kernel.

Afterwards, the repeated candidates are the input of the third layer, which calculates the brightest388

cosine and euclidean distance. Thus, the subjects [1, 2, 27] are considered to identify the individual.389

Figure 10 shows the confusion matrix after measure the cosine and euclidean distances of the brightest390

pixels. Therefore, the AP-SVM determines that the unknown individual is the subject 1, because of it is391

the one that contains more similarities than the others, i.e. it has more coincidences in the brightest392

distance feature.393

Figure 10. Example of confusion matrix obtained after the classification of layer 3.
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3.2. Facial recognition accuracy394

The achieved facial recognition accuracy directly depends on the visible facial ROI and the395

classification done by the first layer of the AP-SVM and the repeated items obtained from the second396

layer, i.e. the cosine and euclidean Top5. Table 1 lists the Top5 and Top3 in percentage for the three397

following scenarios: when there are no objects that hide the face (100%), when an object, such a scarf or398

a mask, occludes the lower part of the face (50%) and when the forehead is the only visible part (25%).399

On top of that, the aforementioned scenarios reduce the spectral information that can be extracted400

(see Figure 4) and, hence, the accuracy recognition achieved. In contrast, the compression ratio is401

greater and the computational costs are reduced. It is worth mentioning that the maximum recognition402

accuracy is as high as the ones obtained by the two first layers.403

Table 1. Top5 and Top3 results obtained from the second layer of the C-SVM (depicted in percentage).

Top All face Upper part Forehead
(100% ROI visible) (50% ROI visible) (25% ROI visible)

Top5 Euclidean (Top5E) 93% 93% 66%
Top5 Cosine (Top5C) 80% 80% 60%

Top3 Euclidean (Top3E) 80% 73% 60%
Top3 Cosine (Top3C) 80% 73% 60%

The first scenario does not introduce objects that occlude any facial ROI, so there are 36404

visible regions to extract the spatial information (see Figure 4(a)). In total 72 features are obtained,405

corresponding to the centroids and the brightest pixels of each of the visible areas. This fact reduces406

the spectral information roughly 99.9933% that is used to classify the unknown individuals. Figure 11407

shows the confusion matrix in this scenario, in which the recognition accuracy achieved is 93%, i.e. 14408

out of 15 individuals are recognised by the AP-SVM.409

Figure 11. Confusion matrix with the 100% visible of the facial ROI.

The second scenario only makes visible the facial ROI located in the upper part of the face (see410

Figure 4(b)). Thus, 19 facial ROI are used to extract the hyperspectral signature composed by 38411

features, that reduces the information roughly 99.9963%. The confusion matrix of the aforementioned412

scenario is shown in Figure 12; 13 of 15 individuals are recognized (86.67%). Due to the lack of a dataset413

that contains hyperspectral information with clothing accessories, such as scarves or sunglasses, we414

have only selected the facial ROI that are visible in the corresponding scenarios.415
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Figure 12. Confusion matrix with the 50% visible of the facial ROI.

The last scenario imposes most visibility restrictions in which 10 facial ROI are visible, which416

match with the regions of the forehead (see Figure 4(c)). This lack of spectral information results in417

lower facial recognition accuracy; only 6 of 15 individuals are recognized (40%) as is shown in Figure418

13. In contrast, the spectral information stored is reduced up to 99.9981%.419

Figure 13. Confusion matrix with the 25% visible of the facial ROI.

3.3. Performance evaluation metrics for the AP-SVM tree420

The performance of classification results has been exhibited through four key metrics such as421

precision, recall, f1-score and accuracy, whose calculation formulas are expressed in Equation 3, 4,422

5 and 6, where TP, TN, FP and FN denoted the true positive, true negative, false positive and false423

negative, respectively.424

Precision =
TP

TP + FP
(3)
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Recall =
TP

TP + FN
(4)

F1− Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(5)

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

This evaluation criteria on face classification has been applied in the three aforementioned425

scenarios: all face (100% ROI), upper face (50% ROI) and forehead (25% ROI). Figure 14 graphically426

shows the results of the evaluation metrics used in the different layers of the AP-SVM tree and on427

the overall AP-SVM. It is worth mentioning that recall and accuracy has the same values, it means the428

model is somehow balanced, i.e. the AP-SVM is able to correctly classify positive unknown individuals429

as well as to correctly classify negative unknown individuals.430

All Face
(100% ROI)

Upper Part
(50% ROI)

Forehead
(25% ROI)

Figure 14. Performance metrics for the AP-SVM tree with different visible parts of the face.

4. Discussion431

The trade-off between compression ratio and recognition accuracy has been compared with five432

state-of-the-art proposals that use hyperspectral images. Table 2 shows the recognition accuracy433

obtained by the different studies on hyperspectral face recognition as well as the compression ratio434

achieved by them. Z. Pan et al. [28] get a compression ratio up to 99.9% because they manually select435

five key regions for the frontal faces corresponding to the forehead, left cheek, right cheek, hair and lips436

by achieving roughly 75% correct coincidences. Unfortunately, only two of these regions are visible437

when a person wears a mask or a scarf, so the accuracy recognition results will be worse. In the same438

sense, W. Di et al. [29] manually locate the eyes position, from them the face is extracted, whose size is439

162× 150. Then, the extracted hyperspectral cube is normalized and scaled to 54× 50 with the aim to440

save the computational costs. The rest of the works [24,27,32] also crop and resize the face area and441

perform an image fusion to transform the hyperspectral cube into a flatten image, which is obtained by442

band fusion. V. Sharma et al. [27] keep the whole spectrum range but the size of the face is resized to443

263× 263 pixels, so the compression ratio is worse than the other studies but the recognition accuracy444
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is high. Meanwhile, authors of works [24,29,32] perform a band selection as well as resize the face area445

to reduce the spatial information obtaining high percentages of hits in facial recognition.446

Table 2. Comparison of hyperspectral face recognition accuracy and compression ratio.

Dataset Extracted Accuracy Compression
Dataset/size Bands Spectrum Features Bands Ratio

[28] 200 31 0.7µm− 1.0µm 5 31 75% 99.9995%
[29] 25 (PolyU) 33 0.4µm− 0.72µm 2700 (54× 50) 24 78% 99.2509%
[27] CMU 65 0.4µm− 0.72µm 69169 (263× 263) 65 86.1% 93.2264%

UWA 33 0.4µm− 0.72µm 900 (30× 30) 4 98% 99.9895%[24] PolyU 24 0.45µm− 0.68µm 1748 (46× 38) 5 95.2% 99.8610%

[32] PolyU 33 0.4µm− 0.72µm 4096 (64× 64) 4 95% 99.8106%
CMU 65 0.4µm− 0.72µm 4096 (64× 64) 37 98% 99.7776%

Ours UWA 33 0.4µm− 0.72µm 70 33 93% 99.9933%

Therefore, the state-of-the-art proposals applies one of the two following methods with/without447

band selection: band fusion through calculating the average of each band or select a key pixel of a448

facial ROI. Nevertheless, HyperFEA algorithm automatically delimits the face area and its facial ROI449

without a band selection to extract the average pixel (centroid) and a key pixel (brightest pixel) of each450

region. On this basis, the face area is not resized to save computational costs.451

Figure 15 shows the compression factor normalized with respect to our proposal. For the shake452

of clarity the proposal presented by V. Sharma et al. [27] has not be considered in this study due to453

the compression ratio is the worst. The results draw up a good balance between recognition accuracy454

and compression ratio considering that our proposal is one of those that reduces the hyperspectral455

information the most.456

Figure 15. Normalized compression factor with respect to our proposal.

The recognition rate obtained by our proposal has also been compared with other state-of-the-art457

proposals, whose objective is to recognize unknown individuals that wears mask or other clothing458

accessories that occlude part of the face. Table 3 lists the recognition rates achieved by some459

state-of-the-art proposals in the three aforementioned scenarios. Moreover, Table 3 also depicts460

the method used by each proposal. The results reveal that our proposal is close to the state of the461

art when the face is hidden by a mask. Meanwhile, when the forehead is only the face region that is462

visible, the recognition rate of our solution doubles the one proposed by A.C. Tsai et al. [33].463
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Table 3. Comparison of recognition rates with state-of-the-art proposals.

Proposal Method All face Upper part Forehead
(100% ROI visible) (50% ROI visible) (25% ROI visible)

[18] CNN+BoF NA 91.3% NA
[34] CNN+SVM NA 87% NA
[33] CNN 97.36% 95.38% 23.07%
[35] PCA+SVM 90.14% 67.82% NA
[36] SRC 91.92% 72.37% NA
[37] CNN 97.21% 68.69% NA
[37] DCGAN+CNN 97.36% 75.21% NA

Ours AP-SVM (SVM) 93% 86.67% 40%

5. Conclusion464

This work has focused on extracting features from hyperspectral images by using computer vision465

techniques and classify unknown individuals through an AP-SVM tree. The process starts with the466

detection of the facial ROI. Then, the centroid or average pixel and the brightest pixel are extracted467

from each facial ROI. In contrast to the works in the literature, which use hyperspectral images to468

face recognition, HyperFEA algorithm automates the extraction of spectral characteristics of a face.469

In addition, it facilitates the extraction of such features in parallel by using parallel-programming470

architectures, such as GPUs or FPGAs, where each facial subregion will be processed by a different471

kernel.472

Experimental results draw up an interesting trade off achieved by the HyperFEA algorithm in473

which the compression ratio is up to 99.99% and the recognition accuracy is 93%, when all facial ROI474

are visible, but the results are more interesting when several regions of the face are hidden by objects,475

such as masks, sunglasses or scarves, where the recognition accuracy achieve is up to 86.67%. This476

result could be improved by using hybrid hyperspectral and non-hyperspectral techniques, where477

they are self-complementary.478
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