
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

FPGA-based hyperspectral lossy compressor with
adaptive distortion feature for unexpected scenarios

Julián Caba, Dirk Stroobandt, Marı́a Dı́az, Jesús Barba, Fernando Rincón,
Sebastián López, Member IEEE, and Juan Carlos López, Member IEEE

Abstract—Lossy compression solutions have grown up during
the last decades because of the increment of the data rate
in the new-generation hyperspectral sensors, however linear
compression techniques include useless information on regions of
little interest for the final application and at the same time scarce
information on areas of interest. In this paper, a transform-based
lossy compressor, HyperLCA, has been extended to include a run-
time adaptive distortion feature that brings multiple compression
ratios in a same scenario. The solution has been designed to keep
the same hardware-friendly feature, just like its previous version,
specifically conceived to ease the deployment of the solution
on reconfigurable hardware devices (FPGAs). The experiments
demonstrate that the new version of the compressor is able
to process 1024x1024 hyperspectral images and 180 spectral
bands (377.5MB) in 0.935 seconds with a power consumption
of 1.145 watts. In addition, experimental results also reveal that
our architecture features high throughput (MSamples/s) and
remarkable energy-efficiency (MB/s per watt) trade-offs, 10× and
6× greater than the best state-of-the-art solution, respectively.

Index Terms—hyperspectral imaging, lossy compression, on-
board processing, FPGA, adaptive computing

I. INTRODUCTION

THE information collected by hyperspectral sensors in
the electromagnetic spectrum provides richness of spec-

tral information, especially if they are high-resolution and
multichannel, to be processed by applications related to the
earth’s observation. This fact makes hyperspectral technology
a leading candidate for the analysis of land areas and, hence,
has acquired an important relevance, being widely used for
a variety of remote sensing applications such as precision
agriculture, geological mapping or mineral exploration. Nev-
ertheless, the large amount of data collected by these sensors
requires huge on-board storage resources or high bandwidth
communications, but both are limited. On top of that, the
technological advances promote to market sensors with higher
spectral and spatial resolutions that make on-board data pro-
cessing more challenging [1], [2].

Traditionally, the information captured by hyperspectral
sensors are not processed on-board due to the low computing
performance and the limited on-board power capacity. Thus,

J. Caba, J. Barba, F. Rincón and J.C. López are with School of Computer
Science, University of Castilla-La Mancha, 13071 Ciudad Real, Spain. E-mail:
[julian.caba, jesus.barba, fernando.rincon, juancarlos.lopez]@uclm.es.

D. Stroobandt is with Ghent University, 9000 Ghent, Belgium. E-mail:
dirk.stroobandt@ugent.be.

M. Dı́az and S. López are with the Institute of Applied Microelectronics
(IUMA), 35017 Las Palmas de Gran Canaria, Spain. E-mail: [mdmartin,
seblopez]@iuma.ulpgc.es.

Manuscript received January 6, 2023; revised MONTH DAY, YEAR.

low-power and cost-optimized devices are selected to process
the data sensed, but these devices do not feature a high
performance [3]. In this regard, images are downloaded to the
Earth’s surface to be processed off-line by high-performance
computing systems. In aerial capturing platforms, such as
Unmanned Aerial Vehicles (UAVs), images are usually stored
on-board and processed when the flight mission is completed
[4]. Recently, some efforts have been made to transmit the
images to the ground as soon as they are captured, but it
requires a point-to-point connection with high bandwidth in
order to reduce large delays [5]. Consequently, the transfer of
large volumes of data reveals a bottleneck in the downlink
systems that can affect the overall performance, as well as the
budget of energy consumed by the transmission [6].

Recent studies propose edge computing solutions that allows
to process the sensed images on-board by reducing the amount
of downlink bandwidth. Most hyperspectral imaging appli-
cations requires the processing of huge data using complex
algorithms with a formidable computational burden [7], whose
solution is only feasible by the use of massive parallel process-
ing architectures, such as Graphics Processing Units (GPUs)
and Field-Programmable Gate Arrays (FPGAs), due to the
performance they can achieve and the accuracy of the results
obtained, even when fixed-point operations are used [2], [8],
[9]. However, hyperspectral imaging applications are computa-
tionally intensive, included AI (Artificial Intelligence) models,
since they require a high number of operations per second
[10]. Unfortunately, most studies introduce high-performance
devices to deploy FPGA or GPU-based solutions [11], [12],
[13] that is generally not acceptable in mobile embedded
systems, such as UAVs, owing to the power consumption
constraints due to the difficulty of heat dissipation and the
low power budget.

In this sense, the use of AI models with particular focus
on Deep Neural Networks (DNNs) allows the deployment
of value-added applications which utilize a tiny fraction of
the downlink bandwidth that would be otherwise required
[14]. Existing FPGA-based AI accelerators mostly tend to
increase array scale to improve throughput performance by
using large FPGA devices [15], [13], but few works optimize
the hardware resource utilization. The widespread adoption
of AI opens up the building of Commercial Off-The-Shelf
(COTS) hardware accelerators for these algorithms, such as
Myriad X Visual Processing Unit (VPU) [16] and Coral
Tensor Processing Unit (TPU) [17], which feature high energy-
efficiency and remarkable performance, cost, and mass trade-
offs [18]. Furthermore, the open-source community facilitates

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

the speed up of the deployment of the model, reducing the
development time and costs with an acceptable level of relia-
bility. Although COTS hardware accelerators are a technology
that has burst onto the embedded systems, concretely in edge
computing domain, the aforementioned trade-offs obtained by
these devices are still slightly worse than ones provided by
an efficient massive-parallel processing architecture based on
FPGA technology due to COTS hardware accelerators are
general purpose devices rather than domain specific [19].

Since the bandwidth is limited, as well as the in-circuit
memory and dedicated hardware resources, such as DSPs,
available on devices to implement a cost and energy-optimized
solution, the way to address this challenge is to use on-board
hyperspectral image compression techniques. Although there
are a large variety of compression algorithms in the litera-
ture, lossless compression algorithms are preferred because
they preserve most hyperspectral information [2]. Lossless
techniques produce undistorted data after the decompression
process, but the compression ratio is not large enough, however
near-lossless methods allow obtaining larger values of com-
pression ratio, introducing distortions that can be controlled in
accordance with the compression ratio, but it can still be too
small. Nevertheless, the latest-generation sensors increase the
data-rate, requiring a higher compression ratio and real-time
compression to avoid the accumulation of uncompressed data
and therefore efficient transmission [20]. Although most state-
of-the-art lossless compressors achieve a quite rate-distortion
performance, they provide very moderate compression ra-
tios roughly 2∼3:1 [21], which are not enough to process
the amount of data produced by newest-generation sensors.
Therefore, limited communication bandwidths and increasing
data volumes force to move from (near-)lossless compression
techniques to lossy compression techniques, where a major
research effort has been carried out in recent years [2], [22].

In mobile-embedded systems scenarios, parallel processing
devices, such as cost-optimized FPGAs, are suitable to im-
plement hyperspectral image compression algorithms, because
of the balance between the degree of parallelism and the
cost-energy, plus the cost savings of an FPGA-based solution
with few resources. Unfortunately, the limited computational
resources of these devices poses a new challenge when a
solution is based on such technologies, so low-complexity
compression schemes stand as the most practical solution for
such restricted scenarios [23], [24]. Nevertheless, most state-
of-the-art lossy compressors are based on existing 2D images
or video compression algorithms, which are considered high
computational burden, intensive memory requirements and
non-parallel nature [25]. This fact causes its use to be lim-
ited in resource-constrained environments, such as on-board
compression [26]. In this context, the Lossy Compression
Algorithm for Hyperspectral Image Systems (HyperLCA) [27]
has been developed as a hardware-friendly lossy compressor
for hyperspectral images, which provides good compression
ratios with a reasonable computational burden, because the
compression process is based on transform operations. Briefly,
this process maps the spatial domain of an image into its trans-
formation domain to obtain the coefficients with lager ampli-
tude, i.e., the features more representative of an image, which

are then encoded. In addition, this algorithm has been designed
to meet the constraints imposed by pushbroom/whiskbroom
scanners, considering each block independently, which results
in less use of hardware resources. Its suitability for real-time
performance applications has been previously analyzed in [28].

Nevertheless, HyperLCA and state-of-the-art lossy com-
pressors behave linearly in compression ratio and quality
performance terms, i.e. the hyperspectral data is compressed
in accordance with a criteria that is defined at the beginning
of the process and it does not change until it is completed.
Such criteria defines the compressed image quality as well as
the computational resources used in the compression process.
Concretely, Signal-to-Noise Ratio (SNR), Root Mean Square
Error (RMSE) and Maximum Absolute Difference (MAD) are
conventional metrics applied in lossy image compression to
describe the efficiency of compression and data quality for
further use [29].

In this paper, the HyperLCA algorithm has been extended in
order to include adaptive distortion feature without adding an
overhead from the original implementation, making it a smart
compressor by selecting the relevant blocks close to a pre-
defined signature pattern. Therefore, the algorithm has been
adapted to be run more flexibly with different compression
ratios without modifying the set of core operations performed
in its original version. Furthermore, an analysis of the FPGA-
based HyperLCA with adaptive distortion feature has been
carried out by setting different rules of the distortion applied
on the same scenario, resulting in multiplicity of compression
ratios within the same image and wide range of quality
compression performance. It means multiplicity rate–distortion
relations take place in the compressed image, which contains
high and low rate distortions, so not only the most different
hyperspectral pixels are perfectly preserved; that is, these
pixels are within the extracted information along with extra
relevant pixels of interesting blocks, which results in negligible
losses since some compressed blocks have less distortion. This
fact benefits many hyperspectral imaging applications in which
the spectral resolution is decisive; the blocks containing a large
number of similarities can be compressed with a different
criteria than blocks with lower similarities to the pattern.
The relevant blocks are selected at run-time by comparing
pixel by pixel with a signature pattern looking for similarities
in each of the spectrum bands. Finally, the architecture has
been compared with the previous version implemented in [8]
and other state-of-the-art compressors in terms of throughput
and hardware resource utilization. Against this backdrop, the
major motivation of this work is to demonstrate the afore-
mentioned claims about the HyperLCA with quality control,
and therefore, the aim is to contribute to the scientific com-
munity with an intelligent lossy compressor for hyperspectral
imaging, which enriches those blocks of greatest interest in an
unexpected/unknown scenario, by using a cost-optimized and
energy-efficient solution based on FPGA technology.

This paper is organized as follows. Section II explains in
detail the proposed quality control version of the HyperLCA
compressor and highlights the differences with its original ver-
sion. Section III includes a comprehensive description about
the FPGA-based architecture for the execution of the com-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Fig. 1. Overview of the HyperLCA compressor with adaptive distortion.

pressor. The results of the proposed hyperspectral compressor
implemented on a ZC7Z020 FPGA device have been evaluated
in Section IV. Section V discusses about the performance and
hardware resources utilization of the proposed architecture.
Finally, Section VI shows conclusions achieved in this work.

II. HYPERLCA ALGORITHM

The HyperLCA algorithm is a lossy transform-based com-
pressor for hyperspectral imaging, whose original version has
been modified into a hardware-friendly version. Thus, the
algorithm has been redesigned to achieve high compression
rate-distortion ratios, as well as the computational burden
has been decreased due to the high-level of parallelism im-
plemented for applications based on pushbroom/whiskbroom
sensors [9]. All of the changes made allow for the use of
parallel processing architectures, such as GPUs or FPGAs,
on which the algorithm has been implemented, [28] and
[8], respectively. Moreover, HyperLCA algorithm have been
specially designed to work inside specific numeric ranges and
use integer arithmetic, specifying the precision needed for the
operations to be suitable in parallel computing architectures
as previously discussed in [8], [9], [28].

The transform-based proposed solution can independently
process blocks of the image regardless of the spatial align-
ment of them, which facilitates the parallelization of the
compression process. It means that a hyperspectral pixel can
be processed independently of the subsequent pixel. On this
basis, this paper proposes to analyze each pixel at run-time to
determine the rate of distortion that should be applied to the
block being processed, rather than setting a desired minimum
compression ratio for all blocks captured by the sensor, as
previous versions of the algorithm perform. Figure 1 shows an
overview of the new version of the algorithm that represents
the three main computing stages involved in the HyperLCA
compressor with adaptive distortion feature, composed by a
pre-processing or block analysis stage, a spectral transform
stage and an entropy coding stage.

A. Stage 1: Pre-processing or block analysis

Firstly, the hyperspectral image is broken into blocks com-
posed of BS consecutive horizontal pixels (Mk), also known
as lines or blocks, that will be processed. Then, the pmax

most representative pixels within a block (Mk) are calculated;
it is feasible because the HyperLCA compressor follows the

unmixing-like strategy. The previous implementations of the
HyperLCA algorithm initialize the pmax parameter from three
input parameters: CR (minimum desired compression ratio),
Nbits (number of bits) and BS (block size) to determine
the number of transformations performed on the hyperspectral
block. However, in this work, the pmax is not fixed at design
time, it is recalculated for each block regarding to the number
of similar pixels with a hyperspectral pattern signature. The
balance between SNR, RMSE and MAD quality metrics has
been previously evaluated in earlier publications by combining
different configurations of the input parameters (CR, Nbits

and BS) [28]. In particular, one of the best configurations is
set the Nbits and BS parameters to 12 and 1024, respectively.
These values are kept to calculate the pmax at run-time, whilst
the CR depends on the number of hyperspectral pixels close
to the pattern signature.

Therefore, the HyperLCA compressor determines the num-
ber of transformations performed on the block being process-
ing, Mk, as shown in Equation (1), where DR refers to the
number of bits per pixel per band; nb represents the number
of bands; BS is the number of consecutive horizontal pixels
in a single block; CR refers to the desired compression ratio,
defined as the relation between the number of bits in the
original image and the ones of the compressed data; and
Nbits is the number of bits that determines the precision and
dynamic range to be used for representing the values of the
compressed data. Thus, the number of transformations per-
formed, pmax, directly determines the maximum compression
ratio to be reached with the selected configuration, in which
higher pmax values result in better reconstructed images, but
lower compression ratios.

pmax ≤ DR · nb · (BS − CR)

CR · (DR · nb+Nbits ·BS)
(1)

The compression ratio (CR) used in the calculation of pmax

for a block must be determined by analyzing each of the
pixels of that block (Mk), comparing them one by one with
a reference hyperspectral signature (reference pattern). This
process can be done by using the Euclidean distance with the
reference signature and the hyperspectral pixels within a block
to determine if the block, which is being processed, contains
a high percentage of pixels close to the reference or, on the
contrary, contains few matches. However, Euclidean distance
calculation is costly in reconfigurable devices and makes it
necessary to look for alternatives. In this sense, this work
proposes a hardware-friendly solution by the use of band-
limit values, where a delta value is defined to set the upper
and lower limits that draw the same plot that the reference
signature. The results of this method are similar to the ones
obtained by Euclidean distance method.

Figure 2 shows graphically the band-limit adopted approach,
where three hyperspectral pixels and a reference signature
(black line) are plotted. In addition, the red dotted lines define
the upper and lower limits whose trend is identical to that
drawn by the reference signature. Therefore, hyperspectral
signatures within both limits are considered close to the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 2. Overview of pixel selection process by limits.

reference (green line of Figure 2), as well as those pixels
whose a few number of reflectance values are outside the limits
(blue line of Figure 2); the number of values outside the limits
is configurable. This fact means that hyperspectral signatures
whose reflectance is very similar to the reference, except in
a small number of bands, are also considered to be close to
the reference signature. Meanwhile, the hyperspectral pixels
whose most reflectance values are outside the limits are not
considered (orange line of Figure 2).

Once all hyperspectral pixels within a block are defined
as in or out the limits, the CR is set by analyzing the
number of pixels inside the boundaries. Figure 3 shows three
examples with different compression ratios over the same
scenario. Firstly, Figure 3a is an original RGB figure of a
vineyard scenario, whilst Figure 3e shows a pattern in which
white and black colors represent the green vegetable signatures
and other materials, respectively. Unfortunately, the sensor
used in this work captures the hyperspectral information line
by line, it means the whole hyperspectral information of a
scenario is not obtained immediately, so the operations must
be performed over a line (Mk) with BS hyperspectral pixels.
Thus, when a low distortion is required but only in the blocks
which contains useful information for the final application, the
number of hyperspectral pixels close to the reference must be
small. In this sense, Figures 3b 3c and 3d highlight in green
the blocks whose CR is low, i.e. these lines contain useful
information for the final application, while the blocks whose
hyperspectral information is not too relevant are highlighted
in black. Meanwhile, Figures 3f, 3g and 3h highlight the loss,
hit and excess of hyperspectral information with respect to
the ideal information extraction (Figure 3e) in white, green
and red, respectively. The process to select relevant blocks in
the different scenarios fulfills the following criteria: at least
10 pixels close to the reference for the scenario represented
in Figure 3b, at least 300 pixels close in the case of Figure 3c
and at least 800 pixels in the last case (Figure 3d).

B. Stage 2: Spectral transform

The HyperLCA compressor is among the transform-based
algorithms that employs a modified version of the well-known
Gram-Schmidt orthogonalization method, which is widely
used in lossy compression because of its moderate complexity,
in which no band reordering is required. The basic idea of

Algorithm 1 HyperLCA Transform.

Inputs:
Mk = [r1, r2, ..., rBS], pmax

Outputs:
µ̂; E = [e1, e2, ..., epmax

]; V = [v1, v2, ..., vpmax
]

Algorithm:
1: Average pixel: µ̂;
2: Centralized image: C = Mk − µ̂ = [c1, c2, ...cBS];
3: for n = 1 to pmax do
4: for j = 1 to BS do
5: Brightness Calculation: bj = c′j · cj ;
6: end for
7: Maximum Brightness: jmax = argmax(bj);
8: Extracted pixels: en = rjmax

;
9: qn = cjmax

;
10: un = qn/bjmax

;
11: Projection vector: vn = u′

n · C;
12: Information Subtraction: C = C − qn · vn;
13: end for

this class of algorithms is to map the spatial domain of a
hyperspectral image into its transformation domain [2]. In
this regard, the Spectral Transform stage selects the most
different pixels of a hyperspectral image using orthogonal
projection techniques. Therefore, the selected pixels are used
for projecting the image in order to remove redundancies and
thus obtain a spectral decorrelated and compressed image.

The Spectral Transform applied by HyperLCA compressor
is described in detail in Algorithm 1. The inputs of this stage
are the hyperspectral block to compress (Mk), which is the
same as the one being analyzed by the Pre-processing stage,
and the number of most different pixels to extract (pmax),
which is the output of the Pre-processing stage, i.e. it is
responsible for determining the number of transformations or
orthogonal projections to perform on the hyperspectral block.
Whilst the outputs of this stage are the average pixel (µ̂) of
the input hyperspectral block (Mk), the set of indexes related
to the pmax most different hyperspectral pixels (E) and their
corresponding projection vectors (V).

The first step of the algorithm is to centralize the hyper-
spectral block (Mk) subtracting the average pixel (µ̂), which
is obtained by adding all the pixels of a band of the hyper-
spectral block and dividing by the number of pixels (BS), this
operation is performed for all the bands of the block, resulting
in a vector with nb (number of bands) elements (line 1 of
Algorithm 1). Then, it is used to get the centralized version
of the hyperspectral block (C) in line 2. In a second step, the
pmax most characteristic pixels are sequentially extracted from
lines 3 to 13. For this purpose, the brightness of each hyper-
spectral pixel within the block is calculated following a vector
normalization strategy, which is defined as the product of each
band within the hyperspectral pixel with itself (lines 4 to 6 of
Algorithm 1). Subsequently, the highest brightness (jmax) in
each iteration determines the pixels to extract (en) from the
original hyperspectral block (Mk), so the algorithm searches

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Pixel selection in a vineyard scenario (selected blocks in green color). (a) Original Vineyard. (b) Line selection with low compression ratio. (c) Line
selection with mid compression ratio. (d) Line selection with high compression ratio. (e) Pattern of pixel selection. (f) Differences between selected pixels in
(b) and pattern. (g) Differences between selected pixels in (c) and pattern. (h) Differences between selected pixels in (d) and pattern.

for the maximum value of the previously calculated brightness
and then extracts the original pixel whose index matches this
maximum brightness, such operations are performed in lines 7
and 8 of Algorithm 1, respectively. Afterwards, the orthogonal
vectors, qn and un, are obtained (lines 9 and 10); qn is the
hyperspectral pixel of the block (Mk) whose brightness value
is the highest, while un is obtained by dividing each value of
qn by the brightness value. The projection of each block pixel
over the direction spanned by the selected pixel is estimated
with un orthogonal vector (line 11 of Algorithm 1). Finally,
the extracted information is subtracted from the centralized
block C in line 12, resulting in a new hyperspectral block,
also called C, that is the new input of the loop block.

Accordingly, C retains the spectral information that is
not represented by the extracted pixels (E) and thus it also
represents the information that will be not recovered in the de-
compression process. Therefore, highest pmax values reduces
the information that cannot be recovered. In this sense, the
adaptive distortion feature mitigates the lost of information in
the relevant blocks for the final application, so higher pmax

values are applied in those blocks.

C. Stage 3: Entropy coding

The last stage of the HyperLCA compressor performs the
entropy-coding of the vectors received from the Spectral
Transform stage, where the use of Golomb-Rice algorithm [30]
makes possible to consider each vector independently from
the rest, i.e. the outputs of Spectral Transform stage can be
consumed as they are received, thus both stages are carried
out in parallel. To do so, the compression parameter (N) is

Fig. 4. Overview of the bitstream structure generated.

calculated as the average value of the vector being processed.
Afterwards, the elements of the vector are divided by N as
well as the quotient (q) and the remainder (r) of such operation
are also obtained. Second, the lowest power of 2 higher than N
is calculated as b = log2(N) + 1. The quotient (q) is codified
using unary code, whilst the remainder (r) is coded as plain
binary using b − 1 bits for r values smaller than 2b − N ,
otherwise it is coded as r + 2b −N using b bits.

D. Bitstream Generation

Finally, Data Packaging stage is performed to generate a
unique bitstream that contains the outputs of the aforemen-
tioned compression stages. Figure 4 graphically shows the
structure generated for the compressed bitstream, which is
divided into two hierarchical blocks.

Firstly, a Global Header takes place at the beginning of the
stream to define the global information about the hyperspectral
image, including the parameters used in the compression
process. It contains the spatial (number of columns and rows)
and spectral (number of bands) information of the processed
image, it also denotes the block size used (BS), the number

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Centroid () MB Index (jmax)

Avg_Cent

SBuffer

Fig. 5. Overview of the hardware implementation related to the HyperLCA transform with quality control.

of bits per pixel per band (DR) and the number of bits used
for representing the values of the compressed data (Nbits).

The payload is placed after the Global Header, which is
broken into blocks that contains two fields: Block Header
and Block Payload. Owing to the fact that the blocks of a
hyperspectral image are compressed with a variety number of
transformations, it is mandatory an 8-bit header to determine
the pmax applied in each block. After the Block Header, there
is the Block Payload which is composed of a single centroid
regardless of the distortion applied on the block and then the
vectors E (most different pixels) and V (projections), whose
number is denoted by the aforementioned 8-bit header.

III. FPGA IMPLEMENTATION OF HYPERLCA ALGORITHM

The HyperLCA compressor with adaptive distortion feature
has been implemented on reconfigurable hardware using HLS
(High-Level Synthesis) to define each operation involved in
the HyperLCA algorithm as a set of specialized hardware
accelerators. HLS reduces the development lifecycle due to
the use of High-Level Languages (HLLs), such as C or C++,
to describe the functionality and include features that allow
to optimize and improve the functionality described by non-
hardware engineers [31].

In this work, specialized hardware accelerators have been
reused from [8] to build the new architecture of the HyperLCA
transform, adding the dynamic behavior required to include
multiple compression ratios. Figure 5 shows an overview
of the hardware architecture implemented for pre-processing
and spectral transformation stages, where the blue boxes
correspond to the modules described in HLS, and are therefore
inherited from the previous development. These modules are
connected through memory buffers and custom logic that
orchestrates them to obtain the desired behavior. For the sake
of clarity, the matching of the blue boxes with the operations
performed in Algorithm 1 is as follows: Avg Cent corresponds
to lines 1 and 2, while loop iter is the main loop body that
comprises from line 3 to 13, where brightness is calculated in
the inner loop and line 7 of Algorithm 1, orthogonal vectors

(q and u) are also obtained once the brightest pixel is selected.
Meanwhile projection and subtraction match with lines 11
and 12 of Algorithm 1, respectively. In pursuit of improving
the performance, the architecture introduces an enhancement
through the partitioning of the orthogonal vectors, q and u,
using VHDL instead of applying a pragma directive on the
HLS description, just before they are used by the projection
and subtraction modules.

Up to this point, the described architecture is responsible
to carry out the transformation process on the hyperspectral
blocks (Mk). However, the transform-based operations carried
out, i.e., the number of executions of the loop iter module,
is now calculated at run-time. The number of iterations is
related to the compression ratio applied to a block, which
also means the amount of hyperspectral data is represented
for each block. Thus, the QoS module manages this process,
as well as notifies the pmax value used to encode the current
hyperspectral block (Mk). In contrast, the Analysis module
is in charge of calculating the number of iterations to be
performed according to the similarity between the pixels that
compose a hyperspectral block and the pattern signature.

Therefore, the Analysis module corresponds to Stage 1 (pre-
processing) and it is the first operation to be executed before
performing any transformation. In fact, the block analysis
process and the first operation of the spectral transform stage
(i.e. the calculation of the average pixel) work in parallel. To
do so, the Analysis module makes a copy of the hyperspectral
block (Mk) in batch mode as soon as it receives the block, so
the Avg module can begin to process it. The parallelism of both
operations allows to obtain the number of transformations to
be applied to the current hyperspectral block with a negligible
overhead and it does not block the HyperLCA operations.
Focusing on the hardware implementation of the Analysis
module, the operations performed by this module has been seg-
mented into a four-stage pipeline and an additional decision-
stage that determines the number of iterations (Niter) to apply
in the spectral transform stage. Figure 6 shows an overview of
the pipeline-based architecture, which has been implemented

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

...

...

...
...

nb b
ands

BS pixels

re
ad in

 th
is
 d

ire
ct

io
n

.

Hyperspectral block (Mk)

Niter

nb b
ands

r1r2r3 r

0

r BSBR

Pattern signature (P)

Fig. 6. Overview of pipeline-based architecture to calculate the number of transformations (Number of PEs = 20).

in VHDL and whose stages perform the following tasks.
Fetch. The data of the pattern signature (P) and hyperspectral
block (Mk) is read in batch mode and stored in pi and ri
registers, respectively (see Figure 6). Thus, this stage reads as
many bands as can be processed in parallel by the operators of
the spectral transform stage, e.g., 20 processing elements (PE)
are required to process 20 spectral bands in parallel. In this
sense, the word widths of the internal memories/registers of
the architectures shown in Figure 5 and 6 must be configured
to work with the corresponding number of bands. On top of
that, the pattern signature, which is previously stored in a
ROM, is moved to a circular buffer before being retrieved; this
process is performed before the fetch stage and it is done to
save time and improve the performance, because the pattern
must be used the same number of times as the number of
hyperspectral pixels contained in the captured image, i.e. the
pattern signature is read BS times in a hyperspectral block
(Mk) and repeated by the lines that contain the hyperspectral
image.
Subtract. Once the hyperspectral data is ready, the subtract
stage subtracts from the current hyperspectral block (Mk) the
pattern signature by bands, so that the first band of the hyper-
spectral pixel belonging to the processed block is subtracted
by the first band of the stored pattern, then the second band
of both and so on. These operations are also performed in
parallel. Finally, the absolute value of the operation is also
calculated. The results of this stage are stored in si registers,
which are represented as yellow and green boxes in Figure 6.
Compare. The results obtained from each PE in the subtract
stage are compared with a constant value, T , which is the
predefined delta value. Thus, if the constant T is smaller than
the result of the absolute subtraction obtained in the previous
stage, it means that the corresponding band is within the limits.
On the other hand, if the comparison results that T is greater,
it implies that the value of the band is outside the limits.
The output of this stage is a zero or one when the band is
outside or within the limits, respectively. In a similar way to
the previous stage, the results of the comparisons are also
stored in ci registers (yellow and purple boxes in Figure 6).
Count. In this stage, the registers that contains a one, i.e. the
band is within the limits, are counted and added to a partial
sum, which is stored in z register (see Figure 6). Thus, this

register is updated until the hyperspectral pixel is compared
with the pattern signature, then it is set to zero to compare the
next pixel of the hyperspectral block.

Finally, the decision stage is performed after the whole
hyperspectral pixel of a block is compared with the pattern
signature. It determines whether a pixel is close to the pattern
from the sum value stored in the z register and calculated by
the count stage. In this sense, it is not necessary that all band
values are within the limits, the solution allows several bands
to be out of them (see blue line in Figure 2). On top of that,
the decision stage sets the number of transform operations
carried out by the spectral transform stage. It is calculated by
counting the number of pixels close to the pattern signature
(Tc) and, then, compare such sum with the predefined user
rules, which figures out the provided quality of service, i.e.
the degree of distortion. To do that, the user must provide two
constants Rmin and Rmax to apply the following cases, where
QoSmax, QoSmin and QoSmed are the number of iterations
that are also predefined; a high number means greater spectral
information extracted.

Niter = QoSmax, if Tc ≥ Rmax

Niter = QoSmin, if Tc ≤ Rmin

Niter = QoSmed, otherwise

IV. RESULTS

The lossy compressor with adaptive distortion feature is
evaluated in this section by analyzing the FPGA-based archi-
tecture implemented on a ZC7Z020-CLG484 and the perfor-
mance achieved by it, comparing the throughput and power
consumption when several PEs are working in parallel. This
section also evaluates the accuracy of the limit method ver-
sus the use of Euclidean distance, which involves complex
operations, such as square root operation, that demand high
computational resources when it is developed in reconfigurable
technology.

A. Hyperspectral dataset collected

The performance of the proposed FPGA-based architecture
has been evaluated by a set of hyperspectral images, which
were sensed by a custom aerial platform over different farming

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

areas on the island of Gran Canaria (Spain). The dataset
contains 4 hyperspectral images collected over two different
vineyard areas, whose exact coordinates are 27◦59′35.6′′N
15◦36′25.6′′W and 27◦59′15.2′′N 15◦35′51.9′′W. For analysis
purposes, the dataset used in the previous work is kept [8].

The acquisition platform mounts a Specim FX10 pushbroom
hyperspectral camera on a DJI Matrice 600 drone [32]. The
image sensor captures 1024 spatial pixels per track and up to
224 spectral bands in the range between 400 and 1000 nm.
Nevertheless, the experiments performed only work with 180
spectral bands; the first 10 spectral bands are discarded as well
as the last 34 bands. This fact is done because the response
in the boundaries of the electromagnetic spectrum is low.

B. Evaluation of the near pixel selection method
The goodness of the pixel selection method through upper

and lower limits proposed in this work has been evaluated
and compared with the Euclidean distance. For doing so, the
analysis has been carried out using the Set Theory operations
to determine the similarity of the results obtained from both
solutions. Concretely, six different metrics have been applied
to analyze the set of pixels selected by the method used in this
work. It is worth mentioning that the result obtained, regardless
of the method used, is a set of pixels that are similar to the
reference pattern, and hence, the analysis must be driven by
the similarities between result sets.

In this context, the universal set, U, is composed by the
index of pixels within a hyperspectral block (Mk). Thus, U is
defined as U = {0, ..., 1023} or U = {x | x ∈ N ∧ x ≤ 1023}.
The set of pixels selected by the Euclidean distance algorithm
is denoted as E (E ⊆ U), whereas the ones extracted by the
limit method is represented as L (L ⊆ U). The following
lines describe the six metrics used to determine the degree of
similarity of the two approaches.
True Positives. This metric analyzes the number of common
pixels selected by the two algorithms, i.e. the intersection
operation is applied to E and L sets, which are obtained by
the Euclidean distance and the limit method, respectively (see
Equation 2). Equation 3 calculates the percentage of hits in L
relative to E; a high percentage means that most pixels selected
by the Euclidean distance are also chosen by the limit method,
but it does not imply that they are very similar; the L set may
contain many more pixels than E does not.

E ∩ L = {x | x ∈ E ∧ x ∈ L} (2)

n(E ∩ L)/n(E) (3)

False Negatives. In this case, it represents the pixels within E
but not in L, or in other words, it denotes the pixels that the
limit algorithm should have included in its solution set but are
not actually included. The set of false negatives is extracted
by the difference operation as Equation 4 shows, where the
common pixels of E and L are extracted from E. This metric
and the true positive metric provide the degree of similarity
between sets; a low percentage of false negatives and a high
percentage of true positive means that two sets are very similar.
Equation 5 calculates the percentage of pixels not considered
by the limit method.

E − L = {x | x ∈ E ∧ x /∈ L} (4)

n(E − L)/n(E) (5)

False Positives. This metric measures the degree of extra
pixels considered by the limit method. It is also calculated
by the difference operation, but now the common pixels of E
and L are extracted from L instead of E (see Equation 6). A
small percentage value of this metric implies that the solution
is tight, whenever the true positives metric has a high value and
the false negatives metric has a low value. The percentage of
pixels included by the limit method is calculated in Equation 7.

L− E = {x | x /∈ E ∧ x ∈ L} (6)

n(L− E)/n(L) (7)

True Negatives. In this case, the metric denotes the pixels not
included in the solutions of both methods, i.e. the pixels that
are not in E nor L. It is calculated by the union of E and L sets
and then the result is subtracted (difference operation) from the
universal set (U). Equation 8 shows the operations performed
to obtain the set of pixel considered as true negatives, whilst
Equation 9 shows the formula to calculate the success rate
of this metric, where E′ is the true negatives of the result
obtained by the Euclidean distance algorithm.

U − (E ∪ L) = {x | x ∈ U ∧ (x /∈ E ∨ x /∈ L)} (8)

n(U − (E ∪ L))/n(E′) (9)

E is a subset of L. This metric determines whether the whole
set obtained from the Euclidean distance algorithm is a subset
of the set obtained by the limit method. It means that the
solution contains all pixels that the reference algorithm.
L is a subset of E. In this case, it denotes the lack of pixels in
the solution because the set obtained by the Euclidean distance
algorithm is greater than the one obtained by the limit method.
This metric and the above one are interesting to attend when
a large number of pixels are analyzed, with two sets of pixels,
this information can be extracted from the first four metrics.

Table I lists the percentage of similarity between the Eu-
clidean distance and Limit methods to select the set of pixels
close to the pattern signature. To do so, the set obtained by
Euclidean method must be satisfied that none of the members
of such set exceeds the value of 200 with respect to the dis-
tance to the reference. Meanwhile, the limit method defines the
upper and lower boundaries according to the spectral values of
the pattern signature with a unique variable (limits column of
Table I), in addition, it also defines the maximum number of
spectral bands whose values are outside the boundaries (errors
column of Table I). These parameters are configurable and, for
the current analysis, the selected values are listed in the two
first columns of Table I.

Analyzing the results shown in Table I, the best configura-
tions are those with a high percentage of true positives and a
low percentage of false positives and negatives. In this sense,
the configurations with 100% hits (true positives) have at the
same time the highest percentage of false positives, so they

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE I
COMPARISON OF RESULTS OBTAINED BETWEEN THE EUCLIDEAN DISTANCE AND LIMIT METHODS.

Limits Errors True Positives False Negatives False Positives True Negatives E ⊆ L L ⊆ E
(E ∩ L) (E − L) (L − E) (U − (E ∪ L))

±15
20 49.093% 50.906% 0.0000% 100.00% 0.6835% 100.00%
25 54.467% 45.532% 0.0000% 100.00% 0.7812% 100.00%
30 60.003% 39.996% 0.0077% 99.999% 1.0745% 99.804%

±20
20 82.158% 17.841% 0.2145% 99.992% 6.3476% 93.261%
25 89.024% 10.975% 0.9618% 99.963% 14.160% 73.339%
30 94.686% 5.3133% 2.8799% 99.879% 28.711% 41.601%

±23
20 96.843% 3.1564% 7.6101% 99.658% 42.187% 22.949%
25 99.256% 0.7437% 12.146% 99.413% 76.172% 8.0078%
30 99.958% 0.0418% 17.789% 99.074% 98.339% 2.6369%

±24
20 98.703% 1.2969% 12.198% 99.413% 65.332% 11.230%
25 99.823% 0.1766% 17.296% 99.106% 93.652% 3.0273%
30 99.995% 0.0046% 22.758% 98.739% 99.804% 1.3671%

±25
20 99.526% 0.4741% 16.796% 99.140% 85.156% 4.0039%
25 99.944% 0.0557% 22.292% 98.773% 97.949% 1.5625%
30 100.00% 0.0000% 27.498% 98.377% 100.00% 0.7812%

±26
20 99.842% 0.1580% 21.478% 98.831% 94.443% 2.2461%
25 99.991% 0.0093% 26.839% 98.430% 99.609% 0.8789%
30 100.00% 0.0000% 31.697% 98.014% 100.00% 0.6836%

±27
20 99.939% 0.0604% 25.837% 98.510% 97.754% 1.0742%
25 100.00% 0.0000% 30.963% 98.081% 100.00% 0.6836%
30 100.00% 0.0000% 35.542% 97.641% 100.00% 0.6836%

±30
20 100.00% 0.0000% 37.044% 97.482% 100.00% 0.4883%
25 100.00% 0.0000% 41.147% 97.008% 100.00% 0.3906%
30 100.00% 0.0000% 44.861% 96.519% 100.00% 0.2929%

are not good candidates, e.g. the last limit configuration listed
in the table. On the other hand, configurations with a low
percentage of false negatives and an acceptable percentage of
true positives are not good candidates either, for example the
second configuration of the limits (Limits = ±20) reaches
up to 94.68% in true positives, but the value of the E ⊆ L
metric is very low; 6.34%, 14.16% and 28.71% for 20, 25 and
30 Errors parameter configuration, respectively. Thus, it means
that most of the obtained sets do not include all values obtained
by the Euclidean distance method. Focusing on the rest of
the configurations, the best configuration is the one whose
Limits and Errors parameters are configured with ±25 and
30, respectively. The obtained results with the aforementioned
configuration contains all pixels acquired by the Euclidean
distance, but extending the sets by including more pixels as
it denotes the false positives metric. In addition, the second
best configuration, Limits = ±24 and Errors = 30, is also
a very good candidate because of its balance between true
positives and false positives. Therefore, the Limit method is a
suitable candidate to replace the Euclidean distance method in
reconfigurable devices due to the simplicity of the operations
performed, as well as the similarity of the obtained results.

C. Hardware analysis

The proposed architecture has been implemented on a
ZC7Z020-CLG484 FPGA device for analysis purposes and
with a twofold objective; firstly, the architecture is kept in
order to compare this new version of the algorithm with
the one previously implemented in [8], secondly the FPGA
architecture (Artix) is a cost-optimized device compared to
other architectures of the same manufacturer, such as Kintex
or UltraScale/UltraScale+. In this sense, the selected device
provides a good trade-off on three aspects: cost, power con-
sumption and throughput. However, to achieve a good ratio
balance in performance per watt, it is necessary to invest

engineering efforts in the architectural part as a consequence of
the limited resources of the ZynQ SoC. For the sake of clarity,
the hyperspectral images have been stored in an external
memory (DDR) to analyze the performance of the developed
architecture. Thus, the hardware accelerator reads the spatial
and spectral information of the hyperspectral images from the
DDR through an AXI-Stream interface using a DMA (Direct
Memory Access).

Table II lists the programmable logic resources in accor-
dance with the number of processing elements (PE) instan-
tiated in each configuration after post-implementation phase,
where the PEs work in parallel to process several bands in
batch mode. The hyperspectral block size (BS) is set to
1024 hyperspectral pixels, whilst the spatial size is 180 bands.
The number of PEs that can be instantiated is 20 PEs,
since the number of available DSPs (Digital Signal Processing
units) is 220 in the ZC7Z020-CLG484 FPGA device and such
configuration requires 202 of these units. Thus, the DSPs
are the limiting resource of the proposed architecture, because
the next possible configuration instantiates 30 PEs, so it
will demand 257 DSPs, i.e. a device with more hardware
resources is requested. It is worth mentioning that the number
of PEs must be a divisor of the number of bands to properly
apply the optimizations. Meanwhile, the rest of hardware
resources are not critical for the scalability of the architecture,
although the BRAMs are between 74% and 83%, it really
depends on the block size parameter (BS), whose value is set
at design time.

The throughput of each configuration of the hardware ac-
celerator is depicted in MSamples per second (MSamples/s),
which depends on the number of PEs instantiated and the
clock frequency configuration. In this sense, the RTL models
for the HLS modules were generated setting the target clock
frequency at 100MHz. Then, two version of the bitstream were
synthesized for two different clock configurations: 100MHz

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE II
HARDWARE UTILIZATION OF HYPERLCA ALGORITHM WITH ADAPTIVE

DISTORTION FEATURE FOR A XC7Z020-CLG484 SOC AFTER
POST-IMPLEMENTATION PHASE.

PEs BRAM18K DSP48E FlipFlops LUTs
1 211 (75.36%) 9 (4.09%) 6,146 (5.78%) 7,502 (14.10%)
2 208 (74.29%) 16 (7.27%) 6,186 (5.81%) 8,329 (15.66%)
4 216 (77.14%) 30 (13.64%) 7,048 (6.62%) 9,384 (17.64%)
6 223 (79.64%) 62 (28.18%) 8,134 (7.64%) 10,886 (20.46%)
10 232 (82.86%) 102 (46.36%) 9,684 (9.10%) 12,733 (23.93%)
12 217 (77.50%) 122 (55.45%) 10,573 (9.94%) 14,458 (27.18%)
20 218 (77.86%) 202 (91.82%) 13,834 (13.00%) 19,178 (36.05%)

TABLE III
MSAMPLES/S ACHIEVED BY THE DIFFERENT VERSIONS OF THE

HYPERLCA ACCELERATOR WITH ADAPTIVE DISTORTION FEATURE FOR A
XC7Z020-CLG484 SOC.

PEs 1 2 4 6 10 12 20

100 MHz 58 120 236 332 494 562 777

143 MHz 87 180 352 495 734 835 1149

and 143MHz. From previous works, the authors observed
that, in some cases, the model generated by the HLS tools
differs greatly due to the characteristics of the generation
process, resulting in higher scheduling cycles for shorter clock
periods. Nevertheless, the Vivado tool was able to handle the
better 100MHz RTL generated models and synthesize a valid
bitstream for other clock frequencies, fully compliant with
the platform timing constraints. Table III lists the average
of the MSamples/s achieved by the hardware accelerator
according to the number of PEs and the configuration of the
clock frequency. It is worth mentioning that the MSamples/s
metric mainly depends on two configuration parameters of
the hardware accelerator: the pattern signature and the rules
that determines the compression ratio applied to the current
hyperspectral block. Thus, the MSamples/s values of Table III
are an average of the results obtained from the four sensed
images by the UAV platform by applying three rules, where
the fast versions (143MHz) achieve 33% better performance
than the slow ones (100MHz).

The hyperspectral sensor used to sense the images is based
on a Specim FX10, which is a pushbroom camera that can
be configured to set the size of each frame and the spatial
information sensed, i.e. the block size (BS) and the number of
hyperspectral bands, respectively. The BS has been configured
to the maximum allowed by this camera (1024 pixels) because
M. Dı́az et al. analyze the image quality in [28] by comparing
the SNR, RMSE and MAD metrics to determine the quality of
the compression process with the same camera, and conclude
that the best results are obtained with the maximum block size.
Thus, the selected hyperspectral sensor can capture 1024 pixels
with 224 bands with a maximum frame rate of 327 FPS (full
range) [33], while the frame rate obtained to capture images of
1024 pixels with 180 bands is approximately 400 FPS. There-
fore, analyzing the performance results and the features of the
hyperspectral camera used to sense the images, the proposed
architecture is able to compress hyperspectral information at
run-time with 6 PEs and the clock frequency configured at

TABLE IV
POWER CONSUMPTION OF THE DIFFERENT VERSIONS OF THE HYPERLCA

ACCELERATOR WITH ADAPTIVE DISTORTION FEATURE FOR A
XC7Z020-CLG484 SOC.

PEs 1 2 4 6 10 12 20

10
0M

H
z MSs/W 25 54 106 141 201 232 305

PL (watts) 0.679 0.648 0.671 0.796 0.893 0.862 0.993

Temperature (ºC) 50.7 50.4 50.6 52.1 53.2 52.8 57.0

14
3M

H
z MSs/W 36 77 149 195 273 316 413

PL (watts) 0.809 0.759 0.807 0.985 1.131 1.082 1.225

Temperature (ºC) 52.2 51.8 52.2 54.3 55.9 55.4 57.0

143MHz or with 10 PEs with the clock frequency set at
100MHz.

From the point of view of energy-efficiency, the number of
PEs is the factor that increases the power requirements, as
well as the working temperature. Table IV lists the energy-
efficiency depicted in MSamples/s per watt (MSs/W), i.e.
the power consumption obtained by the FPGA-based imple-
mentation of the architecture according with the PEs and
clock frequency parameters, the power-consumption of the
hardware accelerator in watts (only the HyperLCA+QoS core)
and the working temperature in Celsius grades. The values
listed in Table IV have been reported by the AMD-Xilinx
for the worst case scenario after post-implementation stage,
showing the variation of the different parameters as the SoC
configuration increases the number of PEs. To do an accurate
analysis of the worst-case scenario, the parameters of the
process have been set to maximum value in order to obtain the
power-consumption and thermal values in such scenario. This
way, the power and thermal delivery solution will work with
any device that will be shipped [34]. Regarding the energy-
efficiency, the MSs/W trade-off has been calculated with the
power-consumption including the embedded microcontroller,
i.e. the processing system and programmable logic parts of
the targeted device. It does not draw a linear behavior since
the number of PEs working in parallel increases the number
of hardware resources, as well as the power-consumption of
the FPGA part; the energy budget of the static part is stable.
In this sense, Table IV also shows the power utilization by
the hardware implementation of the HyperLCA algorithm,
which demonstrates that the architecture is highly efficient
because the main energy budget is consumed by the hardcoded
embedded processor (1.533 watts), so the extra power of the
FPGA-based implementation needed is ranging from 0.314
and 0.416 watts for the 100MHz and 143MHz versions,
respectively. On top of that, the working temperature does not
have a major impact on the 143MHz versions of the system
or on the number of PEs working in parallel.

Although Vivado’s power analysis tools provide accurate
power-consumption results after post-implementation phase,
there are other hardware components outside the FPGA device
that are involved in the compression hyperspectral process,
such as external memory (RAM), that are not considered
in the power reports. Unfortunately, the ZedBoard platform,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE V
POWER CONSUMPTION OF THE DESIGN ON ZEDBOARD

(XC7Z020-CLG484) WITH CURRENT SENSE (J21 CONNECTOR).

PEs 1 2 4 6 10 12 20

10
0M

H
z

Watts 3.624 3.612 3.636 3.642 3.654 3.660 3.720

MSs/W 16 33 64 91 135 153 208

14
3M

H
z

Watts 3.660 3.648 3.660 3.696 3.714 3.720 3.768

MSs/W 23 49 96 133 197 224 304

Fig. 7. Performance and power trade-off analysis of HyperLCA algorithm
with adaptive distortion feature in its versions 100MHz and 143MHz on
ZedBoard (XC7Z020-CLG484) through the current sense (J21 connector).

which includes XC7Z020-CLG484 as programmable logic
part, does not have multiple power sources to obtain real-
time information about the power consumption, so a fine-
grain measurement cannot be performed such as AMD-Xilinx
power estimation tool does. On the other hand, the Vivado
hardware manager tool monitors the supply voltage of Pro-
cessing System (PS) and Programmable Logic (PL) parts, but
the refresh rate is too low. Therefore, the power-consumption
of the architecture presented in this paper has been measured in
the ZedBoard platform across the on-board current sense port
(J21 connector), using a multimeter with enough resolution
to show the difference in power-consumption when a com-
pression process is performed [35]. Table V lists the power-
consumption in watts and energy-efficiency in MSamples/s per
watt (MSs/W) in the different versions of the HyperLCA with
distortion feature. To calculate the current power-consumption,
the multimeter has been connected to the J21 connector to
measure the voltage across a 10mΩ resistor. Thus, the power
input to the board is calculated with the following equations,
where Vj21 is the voltage measured in the J21 connector, R
is 10mΩ and Vin is the input supply voltage (Vin = 12V).

I = Vj21/R (10)

P (watts) = I ∗ Vin (11)

Figure 7 graphically shows a comparison of performance
and power-consumption trade-off between the 100MHz (blue

(a) (b)

(c) (d)

Fig. 8. Comparison of hardware resource utilization in HyperLCA algorithm
with and without adaptive distortion feature. (a) BRAM18K. (b) DSP48E. (c)
FlipFlops. (d) LUTs.

bars and purple line) and 143MHz (red bars and orange line)
of HyperLCA algorithm with adaptive distortion feature. The
power-consumption has the similar behavior in both versions,
whose variations depends on the number of PEs working
in parallel, whilst energy efficiency in the 143MHz version
is 30% higher than 100MHz version. On the other hand,
the efficiency variation with respect to the data collected in
Table IV, where only the FPGA power consumption (PS +
PL) is taken into account, it has been reduced by 35% and
31% for the 100MHz and 143MHz versions, respectively.

V. DISCUSSION

The HyperLCA algorithm with adaptive distortion feature
has been compared with the previous implementation pub-
lished in [8]. Both hyperspectral lossy compressors have
been implemented on reconfigurable hardware, concretely in a
ZC7Z020-CLG484 FPGA device. Thus, the performance and
hardware resource utilization of the two versions are compared
and analyzed, as well as the information extracted by each
implementation in terms of size and quality. In addition, the
hyperspectral lossy compressor presented in this manuscript
has been compared with other state-of-the-art transform-based
compressors, in which reconfigurable devices have been se-
lected to deal with the experimental results of the proposals.

A. Comparison with the previous hardware implementation of
the HyperLCA lossy compressor

Figure 8 graphically shows the hardware resource utilization
of the HyperLCA algorithm with (HLCA+QoS) and without

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Fig. 9. Performance and power trade-off analysis of HyperLCA algorithm
with and without adaptive distortion feature (100MHz).

(HLCA) adaptive distortion feature. The number of BRAMs
increases slightly in this new version of the algorithm because
the pattern analysis stage introduces new internal memories
(see Figure 8a), while the number of DSPs is kept (see
Figure 8b). However, FlipFlops and LUTs are considerable
reduced by some optimizations performed; the main optimiza-
tion carried out is the manual partitioning of the orthogonal
vectors, u and q, by a factor equal to the number of PEs
that contains the hardware accelerator. For the sake of clarity,
the FFs and LUTs are the limiting factor that prevents the
deployment of PEs in the previous version of the hardware
accelerator, rather than DSPs which are the limiting factor
in this new version. Thus, the best configuration of the
HyperLCA with distortion feature, i.e. the 20 PEs version is
not considered in the hardware resource utilization comparison
because it cannot be compared.

The performance and power trade-off achieved by the
HyperLCA with and without adaptive distortion feature are
shown in Figure 9 and 10, where the clock frequency has
been configured at 100MHz and 143MHz, respectively. The
new version gets better MSamples/s per watt (MSs/W), it
is doubled in the configurations that instantiate 10 and 12
PEs; the light blue bars of Figure 9 and 10 show the MSs/W
achieved by the previous implementation of the HyperLCA,
whilst the light red bars of the aforementioned figures rep-
resent the obtained MSs/W by the implementation presented
in this manuscript. The other configurations slightly improve
the MSamples/s achieved (see blue and red bars of Figure 9
and 10). In turn, the performed optimizations also reduce the
power consumption of the hardware accelerator respect to the
previous version, which is more evident for cases with a higher
number of instantiated PEs; purple and orange lines of Figure 9
and 10 draw the watts of the hardware accelerator with and
without adaptive distortion feature, respectively.

The previous implementation of the hyperspectral lossy
compressor extracts the identical amount of spectral informa-
tion from each block that compose the hyperspectral image, so
the applied compression ratio is linear and is defined at design
time. It means the size of extracted data is equal for hyperspec-
tral images with the same spatial and spectral values and the
quality performance of compression is kept. Nevertheless, the

Fig. 10. Performance and power trade-off analysis of HyperLCA algorithm
with and without adaptive distortion feature (143MHz).

Pixel 1 Pixel 2 Pixel 3 Pixel 4

Fig. 11. Compression data size of HyperLCA algorithm with and without
adaptive distortion feature with different configurations.

adaptive distortion feature introduces a non-linear behavior in
terms of quality performance and compression ratio, as well as
preserves the linearity feature of transform-based algorithms,
i.e. the set of core operations applied to extract the spectral
information has a linear behavior. To do so, the number of
iterations performed on the set of core operations is set by
the pre-defined rules which depends on the number of pixels
close to the hyperspectral pattern signature. For experimental
results, the three rules, listed in Table VI, have been defined
to be applied on the sensed images, meanwhile the pattern
signatures have been selected from a previous flight, in where
the weather was similar to that of the compression flight.

Figure 11 graphically shows the compression data size after
the compression process of a hyperspectral image of 377.5MB
using the previous implementation of the HyperLCA algorithm
and the modified one. The hyperspectral cube is composed by
1024 samples, 1024 lines and 180 bands. The compression
ratio of the original implementation of the HyperLCA lossy
compressor has been set at design time with the following
values CR = 12, CR = 16 and CR = 20, which match with
blue, orange and green dotted lines of Figure 11, respectively.
On the other hand, the blue bars of Figure 11 illustrate the non-
linear behavior of the spectral extraction in the HyperLCA
lossy compressor with adaptive distortion, in which four
hyperspectral pixels have been selected as signature patterns to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

TABLE VI
DEFINED RULES FOR EXPERIMENTAL RESULTS PURPOSE.

Niter Qmax (12) Qmin (7) Qmed (9)

Rule 1 Tc ≥ 100 Tc ≤ 50 otherwise

Rule 2 Tc ≥ 800 Tc ≤ 200 otherwise

Rule 3 Tc ≥ 800 Tc ≤ 600 otherwise

obtain the number of iterations to be applied for each sample
of the image according to the rules defined in Table VI. The
number of iterations (Niter) have been set to 12, 9 and 7
for the high, medium and low quality of service, respectively.
These values match with the number of iterations performed
by the original implementation of the HyperLCA algorithm
in the three aforementioned CR configurations, but it can be
modified to obtain better compression quality performance.

It is worth mentioning that each hyperspectral block, Mk,
contains a header block (see Figure 4), so a small size overhead
is included. This overhead is actually 8 bits per block, i.e.
1KB is the overhead introduced by the proposed solution for
the images used because they contain 1024 lines. Therefore,
the maximum and minimum size of the compressed data are
close to blue and green dotted lines of Figure 11. Since the
compression size depends on the two aforementioned factors.

The compression performance of the HyperLCA with
adaptive distortion has been evaluated by compress-
ing/decompressing a hyperspectral image with four pattern
signatures and three rules (see Table VI). The spectral in-
formation lost after the compression process has been ana-
lyzed using three conventional metrics: the Signal-to-Noise
Ratio (SNR), the Root Mean Squared Error (RMSE) and the
Maximum Absolute Difference (MAD), which are shown in
Equations (12)–(14), respectively. The SNR and the RMSE
provides the average information lost in the compression pro-
cess, where high values of the SNR metric are signs of better
compression performance. Meanwhile higher RMSE values
mean the compression process is not accurate and introduces
large information losses. Finally, the MAD metric depicts the
amount of lost information for the worst reconstructed image
value, where 4096 (212) is the worst possible value.

SNR = 10 · log10(
∑nb

i=1

∑np
j=1(Ii,j)

2∑nb
i=1

∑np
j=1(Ii,j − Ici,j)2

) (12)

RMSE =
1

np · nb
·

√√√√ nb∑
i=1

np∑
j=1

(Ii,j − Ici,j)2 (13)

MAD = max(Ii,j − Ici,j) (14)

Table VII shows the average results obtained for the Hy-
perLCA compressor in the three first rows for CR = 12,
CR = 16 and CR = 20, whilst the rest of rows are the
result obtained by the modified version of the algorithm, i.e.
including the adaptive distortion feature. These results draw
different conclusions that should be considered. Firstly, the

TABLE VII
COMPARISON OF THE QUALITY COMPRESSION RESULTS FOR THE

HYPERLCA WITH AND WITHOUT ADAPTIVE DISTORTION FEATURE.

Version Configuration SNR MAD MSE

H
L

C
A

N
b
i
t
s
=

1
2

CR = 12 43.01 24.50 3.12

CR = 16 42.27 34.25 3.40

CR = 20 41.31 41.25 3.73

H
L

C
A

+Q
oS

Pi
xe

l
1 Rule 1 42.54 29.07 3.29

Rule 2 41.83 36.16 3.54

Rule 3 41.31 41.25 3.73

Pi
xe

l
2 Rule 1 42.72 27.40 3.22

Rule 2 41.49 39.51 3.67

Rule 3 41.88 35.71 3.53

Pi
xe

l
3 Rule 1 42.85 26.11 3.18

Rule 2 42.21 32.42 3.41

Rule 3 41.71 37.39 3.59

Pi
xe

l
4 Rule 1 42.89 25.72 3.16

Rule 2 42.26 31.97 3.39

Rule 3 41.71 37.39 3.59

results are between the lowest and highest configurations of
the original implementation because the QoS has been defined
with the same number of iterations that the configuration set
for the implementation without distortion feature. In addition,
it is confirmed that the proposed solution provides better-
quality compression results than the ones obtained by the
previous implementation with the highest compression ratio. It
is worth mentioning that the compression performance results
obtained by the Pixel 1 - Rule 1 configuration are equal to the
CR = 20 configuration, but the spectral information extracted
differs because the distortion feature is able to retrieve more
spectral information from the areas of interest, hence the data
compression size is lager (see Figure 11). Furthermore, it
can be also concluded that the HyperLCA lossy compressor
with adaptive distortion is able to compress the hyperspectral
data with high compression ratios and without introducing
significant spectral information losses.

B. Comparison with other state-of-the-art compressors

Furthermore, the throughput and hardware resource uti-
lization of the hyperspectral lossy compressor with adaptive
distortion feature have been compared with other state-of-the-
art compressors also implemented on reconfigurable hardware.
The state-of-the-art architectures and the one explained in this
manuscript are summarized in Table VIII, where the selected
device, the implemented algorithm, the hardware resource
utilization, the clock frequency and the achieved throughput
(MSamples/s) are listed for each proposal. In addition, the
performance analysis has been expanded in Table IX, where
the power consumption is included, as well as the relationship
between throughput in MB/s and watts.

Prediction-based compression algorithms are good candi-
dates to be implemented on reconfigurable hardware because
of the suitability of matrix operations on them. Typically,
they depend on the correlation between adjacent pixels in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

TABLE VIII
HARDWARE RESOURCE AND THROUGHPUT COMPARISON WITH OTHER FPGA-BASED IMPLEMENTATIONS OF HYPERSPECTRAL COMPRESSORS.

Proposal Device Programming Compression BRAMs DSPs FFs LUTs Freq. Throughput
Method Algorithm (MHz) (MSamples/s)

L. Santos et al.[36] XQR5VFX130 HLS LCE 17 (02.85%) 4 (01.25%) 4,208 (20.55%) 7,836 (05.98%) 80.2 30.25
A. Garcı́a et al.[37] XC5VFX100 HLS LCE 4 (00.88%) 25 (09.77%) 1,937 (03.03%) 7,746 (12.10%) 86.96 27.7
D. Keymulen (1 core)[38] XC7VX690T VHDL FLEX (CCSDS) 72 (02.45%) 31 (00.86%) 9,158 (01.06%) 13,134 (03.03%) 200 9
D. Keymulen (15 cores)[38] XC7VX690T VHDL FLEX (CCSDS) 1,112 (37.82%) 465 (12.92%) 260,750 (30.10%) 297,807 (34.37%) 100 95
D. Fernández et al.[39] XC7VFX690T VHDL PCA 897 (30.51%) 2,580 (71.67%) 57,564 (06.64%) 294,454 (67.99%) 75.99 80.29
D. Báscones et al.[40] XQR5VFX130 VHDL LCPLC-JYPEC 10 (01.68%) 5 (01.56%) - 6,837 (05.22%) 247.35 119.96
D. Báscones et al.[41] XC7VX690T VHDL LCPLC-JYPEC 6 (00.20%) 5 (00.14%) - 6,731 (01.55%) 341.99 162.3
Y. Barrios et al. (1 core) [42] XCZU9EG HLS CCSDS 39 (04.28%) 5 (00.20%) 8,639 (01.58%) 11,965 (04.37%) 100 0.4
Y. Barrios et al. (8 cores)[42] XCZU9EG HLS CCSDS 312 (34.21%) 26 (01.03%) 42,771 (07.80%) 56,800 (20.72%) 100 1.7
J. Caba et al. (12 PEs) [8] ZC7Z020 VHDL-HLS HyperLCA 199 (71.07%) 122 (55.45%) 56,463 (53.07%) 46,116 (86.68%) 100 342
J. Caba et al. (12 PEs) [8] ZC7Z020 VHDL-HLS HyperLCA 199 (71.07%) 122 (55.45%) 56,463 (53.07%) 46,116 (86.68%) 143 511
Our (20 PEs) ZC7Z020 VHDL-HLS HyperLCA 218 (77.86%) 202 (91.82%) 20,028 (18.82%) 19,415 (36.49%) 100 777
Our (20 PEs) ZC7Z020 VHDL-HLS HyperLCA 218 (77.86%) 202 (91.82%) 20,028 (18.82%) 19,415 (36.49%) 143 1,149

hyperspectral data, in which the differences between correlated
values are encoded with fewer bits than the actual values. D.
Báscones et al. present an architecture based on Low Com-
plexity Predictive Lossy Compression (LCPLC), which is an
algorithm based on prediction, uniform threshold quantization,
and rate-distortion optimization. Thus, the proposed solution
implements a pipeline architecture developed in VHDL and
deployed on XQR5VFX130 and XC7VX690T devices in [40]
and [41], respectively. The proposed architecture achieves a
throughput up to 162 MSamples/s and a low power require-
ment, roughly 0.714 watts. Menawhile, LCE (Lossy Compres-
sion for Exomars) is an algorithm designed for on-board image
compression for the European Space Agency (ESA) ExoMars
mission. It consists of four phases: prediction, rate-distortion
optimization, quantization, and entropy coding using Golomb
codes. It has been accelerated by L. Santos et al. and A.
Garcı́a et al. in [36] and [37] using reconfigurable hardware.
Both solutions have been developed with HLS (CatapultC),
by obtaining good ratio between hardware utilization and
throughput. D. Keymulen implements the FLEX algorithm
by introducing a feedback branch with an inverse predictor
in [38]. It can estimate the value of subsequent samples by
controlling the image quality with an adaptive filtering defined
by the user. The architecture achieves up to 95 MSamples/s
when 15 cores are instantiated by increasing 19× when only
one core is working, however the hardware utilization is
considerably increased.

Y. Barrios et al. propose in [42] the implementation of
a lossy extension of CCSDS by adding a quantizer and a
bit-rate feedback loop, to control the losses and achieve the
desired compression ratios without excessively deteriorating
the quality of the decompressed image. The algorithm has
been implemented using HLS techniques, and has been imple-
mented on a reconfigurable, scalable architecture (ARTICo),
which provides adaptive computing at run-time to increase
the number of instantiated cores and, hence, the performance
achieved. Thus, the solution working with one core gets 0.4
MSamples/s, whilst the one instantiating 8 cores achieves 1.7
MSamples/s. Although the run-time flexibility of the ARTICo
architecture is a value-added feature in space scenarios, the
main problem lies in the context switches and in the movement
of data to the local memories of each of the eight reconfig-
urable regions.

The transform-based algorithms are also suitable on re-
configurable hardware. The basic idea behind this class of
algorithms is to map the spatial domain of an image into
its transformation domain. Then, the coefficients with larger
amplitude, or energy, are encoded with fewer codewords than
coefficients with low amplitude to obtain higher compression
ratios. The transform function is first applied to generate
the transform coefficients. Then, the transform coefficients
are decorrelated to remove redundancy. Finally, the output
coefficients are passed to the entropy encoder to generate
the compressed stream. D. Fernández et al. propose in [39]
a PCA-based (Principal Component Analysis) solution in
reconfigurable hardware by using VHDL to carry out the
dimensionality reduction in hyperspectral images. Meanwhile,
the architecture presented in this manuscript and its previous
implementation in [8] are based on transform operations, in
which a high parallelization of the operations results in the
highest performance.

From the point of view of hardware resource utilization,
Table VIII lists the FPGA-based resource utilization of each
hyperspectral compressor and its percentage according to the
selected device. Thus, the percentage of utilization can be used
to compare the state-of-the-art architectures in order to avoid
misleading interpretations of information, where most solution
use mid or large FPGA devices instead of cost-optimized ones,
or where customized embedded resources, such as DSPs, are
not properly used to perform mathematical operations. In this
sense, our architecture achieves the best throughput of the
proposed architectures, up to 1,149 MSamples/s, it is mainly
due to the instantiation of DSPs to carry out the operations
of transformations instead of the use other unsuitable FPGA
resources for such operations. This behavior is also seen in
other proposals, such as the one presented by D. Fernández
et al. in [39] or D. Keymulen in [38]; the version with 15
cores working in parallel presented by D. Keymulen achieves
higher throughput that the version with a core; it increases
the number of DSPs and reduces the clock frequency. It can
be concluded that the use of a hybrid solution, VHDL and
HLS, obtains a good use of hardware resources and maintains
the benefits of both, i.e. the engineer productivity is kept by
using HLS to describe some modules/parts of the architecture,
whilst the modules that require a high degree of parallelism
are developed with a hardware description language (HDL),

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

TABLE IX
PERFORMANCE COMPARISON WITH OTHER FPGA-BASED IMPLEMENTATIONS OF HYPERSPECTRAL COMPRESSORS.

Proposal Hyperspectral Samples Lines Bands Throughput MB/s Watts MBS/WImage (MSamples/s)

L. Santos et al.[36] - 16 16 256 30.25 0.236 2.029∗ 0.116
A. Garcı́a et al.[37] AVIRIS (Jasper Ridge) 614 512 224 27.7 5.449 2.022∗ 2.695
D. Keymulen (1 core)[38] AVIRIS (Jasper Ridge) 614 512 224 9 4.722 7.84 0.602
D. Keymulen (15 cores)[38] AVIRIS (Jasper Ridge) 614 512 224 95 49.842 11.4 4.372
D. Fernández et al.[39] AVIRIS (Jasper Ridge) 614 512 224 80.29 9.004 2.46∗ 3.661
D. Báscones et al.[40] AVIRIS 512 512 256 119.96 29.99 2.732 10.977
D. Báscones et al.[41] AVIRIS 512 512 256 162.3 40.575 0.714 56.828
Y. Barrios et al. (1 core) [42] AVIRIS 512 512 256 0.4 0.1 0.6∗ 0.167
Y. Barrios et al. (8 cores)[42] AVIRIS 512 512 256 1.7 0.425 0.9∗ 0.472
J. Caba et al. (12 PEs) [8] Own (Specim FX10) 1024 1024 180 342 120.234 1.6 75.146
J. Caba et al. (12 PEs) [8] Own (Specim FX10) 1024 1024 180 511 179.648 2.22 80.923
Our (20 PEs - 100MHz) Own (Specim FX10) 1024 1024 180 777 273.164 0.993 275.089
Our (20 PEs - 143MHz) Own (Specim FX10) 1024 1024 180 1,149 403.945 1.225 329.751

∗Obtained from Xilinx Power Estimator datasheet (XPE).

as well as the FSM to synchronize the parts described with
HLS.

Table IX shows a detailed performance summary achieved
by the state-of-the-art architectures and the one presented in
this work, using the values obtained after post-implementation
phase in order to analyze the architectures at the same point. In
addition, the table also lists in the second last column the on-
chip power depicted in watts. Unfortunately, some state-of-the-
art proposals do not provide such information, so it has been
estimated with the Xilinx Power Estimator tool (XPE). The
use of specialized embedded resources of the FPGA does not
have a high impact in the power consumption, but it depends
on the number of clock regions that are active, the amount of
resources and the FPGA technology used. In this sense, the
architecture presented by D. Keymulen in [38] requires more
power than the one presented by D. Báscones et al. in [41],
where both proposals use the same FPGA device and VHDL to
describe the architecture; the difference lies in the number of
FPGA resources used for each proposal. We can conclude that
the architecture presented in this work beats the other state-
of-the-art proposals in the MB/s per Watt (MBS/W) trade-
off, where the fastest version of the HyperLCA compressor
with distortion feature, i.e. the version that contains 20 PEs
working in parallel, is between 4.9× and 5.8× better than
the architecture presented by D. Báscones et al. in [41], when
the clock frequency is configured at 100MHz and 143MHz,
respectively.

It is worth mentioning that the previous implementation of
the HyperLCA compressor is between 3.6× and 4.1× slower
than the version with adaptive distortion feature. In addition,
the clock frequency configuration has little influence on the
rate of MB/s per watt, it is increased 54.66 MBS/W when the
clock frequency is set to 143MHz. Therefore, the architecture
presented in this work is able to compress the aforementioned
hypersperctral image of 1024x1024 spatial size and 180 spec-
tral bands in 0.935s with a power consumption of 1.145W.

VI. CONCLUSION

This work has dealt with the inclusion of the adaptive
distortion feature in the HyperLCA algorithm in order to
increase the spectral information in those regions of interest,
whose spectral information contains an amount of pixels close

to a predefined hyperspectral pattern signature. Thus, the
proposal can be adapted to the scenario that is being processed,
e.g., more spectral information could be collected from the
vegetation than from the soil in a vineyard. In addition, the
compressor can be configured to increase the information in
the lines which contain anomaly pixels, e.g. ships in the middle
of the sea.

The set of core hyperspectral operations is inherited from
previous works [8], [9] where the suitability of the FPGA
technology for this type of applications was tested, so a signif-
icant amount of time is saved. However, the new architecture
includes new optimizations that allows to instantiate more
PEs working in parallel. Consequently, the throughput is con-
siderably increased by the optimizations performed, whereas
the adaptive distortion feature introduces a small overhead
in size terms due to the need to include an 8-bit header for
each sample that is compressed. The solution combines HLS
and VHDL modules, bringing an efficient dataflow that meets
the requirements of an on-board real-time processing with a
pushbroom camera, concretely with the Specim FX10.

Furthermore, we provide a comparison with other FPGA-
based architectures of the state-of-the-art, in which the con-
clusions learned from the discussion reveal that the proposed
architecture is a cost-energy efficient solution without reducing
the compression quality, when the number of transform-based
operations carried out is between the ones defined in the pre-
vious implementation. Moreover, the loss spectral information
can be reduced by increasing the parameter pmax, so better
compression quality can be achieved.

ACKNOWLEDGMENT

This research has been funded by H2020 European Union
program under grant agreement No. 857159 (SHAPES project)
and by the Ministry of Economy and Competitiveness
(MINECO) of the Spanish Government under TALENT
project (PID2020-116417RB-C4, subprojects 1 and 4) and
MIRATAR project (TED2021-132149B-C41).

REFERENCES

[1] A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone,
G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri et al.,
“Recent advances in techniques for hyperspectral image processing,”
Remote sensing of environment, vol. 113, pp. S110–S122, 2009.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

[2] A. Altamimi and B. Ben Youssef, “A systematic review of hardware-
accelerated compression of remotely sensed hyperspectral images,”
Sensors, vol. 22, no. 1, 2022.

[3] M. Radosavljević, B. Brkljač, P. Lugonja, V. Crnojević, Ž. Trpovski,
Z. Xiong, and D. Vukobratović, “Lossy compression of multispectral
satellite images with application to crop thematic mapping: A hevc
comparative study,” Remote Sensing, vol. 12, no. 10, p. 1590, 2020.

[4] F. Ortenberg, P. Thenkabail, J. Lyon, and A. Huete, “Hyperspectral sen-
sor characteristics: airborne, spaceborne, hand-held, and truck-mounted;
integration of hyperspectral data with lidar,” Hyperspectral Remote
sensing of vegetation, pp. 39–68, 2011.

[5] J. M. Melián, A. Jiménez, M. Dı́az, A. Morales, P. Horstrand, R. Guerra,
S. López, and J. F. López, “Real-Time Hyperspectral Data Transmission
for UAV-Based Acquisition Platforms,” Remote Sensing, vol. 13, no. 5,
2021.

[6] E. Morin, M. Maman, R. Guizzetti, and A. Duda, “Comparison of the
Device Lifetime in Wireless Networks for the Internet of Things,” IEEE
Access, vol. 5, pp. 7097–7114, 2017.

[7] R. Guerra, E. Martel, J. Khan, S. López, P. Athanas, and R. Sarmiento,
“On the Evaluation of Different High-Performance Computing Plat-
forms for Hyperspectral Imaging: An OpenCL-Based Approach,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 10, no. 11, pp. 4879–4897, 2017.

[8] J. Caba, M. Dı́az, J. Barba, R. Guerra, and J. A. d. l. T. a.
López, “FPGA-Based On-Board Hyperspectral Imaging Compression:
Benchmarking Performance and Energy Efficiency against GPU
Implementations,” Remote Sensing, vol. 12, no. 22, 2020. [Online].
Available: https://www.mdpi.com/2072-4292/12/22/3741

[9] R. Guerra, Y. Barrios, M. Dı́az, A. Baez, S. López, and R. Sarmiento,
“A hardware-friendly hyperspectral lossy compressor for next-generation
space-grade field programmable gate arrays,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 12,
no. 12, pp. 4813–4828, 2019.

[10] G. Benelli, G. Meoni, and L. Fanucci, “A low power keyword spot-
ting algorithm for memory constrained embedded systems,” in 2018
IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC), 2018, pp. 267–272.

[11] T. Yan, N. Zhang, J. Li, W. Liu, and H. Chen, “Automatic Deployment
of Convolutional Neural Networks on FPGA for Spaceborne Remote
Sensing Application,” Remote Sensing, vol. 14, no. 13, 2022.

[12] M. Xu, L. Chen, H. Shi, Z. Yang, J. Li, and T. Long, “FPGA-Based
Implementation of Ship Detection for Satellite On-Board Processing,”
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 15, pp. 9733–9745, 2022.

[13] S. Liu and W. Luk, “Towards an Efficient Accelerator for DNN-Based
Remote Sensing Image Segmentation on FPGAs,” in 2019 29th Inter-
national Conference on Field Programmable Logic and Applications
(FPL), 2019, pp. 187–193.

[14] G. Furano, G. Meoni, A. Dunne, D. Moloney, V. Ferlet-Cavrois,
A. Tavoularis, J. Byrne, L. Buckley, M. Psarakis, K.-O. Voss, and
L. Fanucci, “Towards the use of artificial intelligence on the edge in
space systems: Challenges and opportunities,” IEEE Aerospace and
Electronic Systems Magazine, vol. 35, no. 12, pp. 44–56, 2020.

[15] L. Li, S. Zhang, and J. Wu, “Efficient object detection framework
and hardware architecture for remote sensing images,” Remote Sensing,
vol. 11, no. 20, 2019.

[16] Intel Movidius, “VPU Intel Movidius Myriad X,” Available
Online: https://www.intel.es/content/www/es/es/products/sku/204770/
intel-movidius-myriad-x-vision-processing-unit-0gb/specifications.
html, (Accessed on 10 March 2023).

[17] Coral.ia, “Coral dev board datasheet,” Available Online: https://coral.ai/
docs/dev-board/datasheet/#system-components, (Accessed on 10 March
2023).

[18] V. Kothari, E. Liberis, and N. D. Lane, “The Final Frontier: Deep
Learning in Space,” in Proceedings of the 21st International Workshop
on Mobile Computing Systems and Applications, ser. HotMobile ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
45–49.

[19] E. Rapuano, G. Meoni, T. Pacini, G. Dinelli, G. Furano, G. Giuffrida,
and L. Fanucci, “An fpga-based hardware accelerator for cnns inference
on board satellites: Benchmarking with myriad 2-based solution for the
cloudscout case study,” Remote Sensing, vol. 13, no. 8, 2021.

[20] B. Huang, Satellite data compression. Springer Science & Business
Media, 2011.

[21] Consultative Committee for Space Data Systems (CCSDS), “Image Data
Compression. CCSDS, Green Book 120.1-G-3.” Available Online: https:
//public.ccsds.org/Pubs/120x1g3.pdf, (Accessed on 29 September 2022).

[22] Y. Dua, V. Kumar, and R. S. Singh, “Comprehensive review of hyper-
spectral image compression algorithms,” Optical Engineering, vol. 59,
no. 9, pp. 1 – 39, 2020.

[23] A. B. Kiely, M. Klimesh, I. Blanes, J. Ligo, E. Magli, N. Aranki,
M. Burl, R. Camarero, M. Cheng, S. Dolinar et al., “The new ccsds
standard for low-complexity lossless and near-lossless multispectral and
hyperspectral image compression,” 2018.

[24] E. Augé, J. E. Sánchez, A. B. Kiely, I. Blanes, and J. Serra-Sagrista,
“Performance impact of parameter tuning on the CCSDS-123 lossless
multi-and hyperspectral image compression standard,” Journal of Ap-
plied Remote Sensing, vol. 7, no. 1, p. 074594, 2013.

[25] L. Santos, E. Magli, R. Vitulli, J. F. López, and R. Sarmiento, “Highly-
parallel GPU architecture for lossy hyperspectral image compression,”
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 6, no. 2, pp. 670–681, 2013.

[26] Y. Barrios, A. J. Sánchez, L. Santos, and R. Sarmiento, “SHyLoC 2.0:
A Versatile Hardware Solution for On-Board Data and Hyperspectral
Image Compression on Future Space Missions,” Ieee Access, vol. 8, pp.
54 269–54 287, 2020.

[27] R. Guerra, Y. Barrios, M. Dı́az, L. Santos, S. López, and R. Sarmiento,
“A new algorithm for the on-board compression of hyperspectral im-
ages,” Remote Sensing, vol. 10, no. 3, p. 428, 2018.

[28] M. Dı́az, R. Guerra, P. Horstrand, E. Martel, S. López, J. F. López,
and S. Roberto, “Real-Time Hyperspectral Image Compression Onto
Embedded GPUs,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, pp. 1–18, 2019.

[29] I. Vasilyeva, F. Li, S. Abramov, V. V. Lukin, B. Vozel, and K. Chehdi,
“Lossy compression of three-channel remote sensing images with con-
trollable quality,” in Image and Signal Processing for Remote Sensing
XXVII, L. Bruzzone and F. Bovolo, Eds., vol. 11862, International
Society for Optics and Photonics. SPIE, 2021, pp. 205 – 216.

[30] P. G. Howard and J. S. Vitter, “Fast and efficient lossless image
compression,” in Data Compression Conference, 1993. DCC’93. IEEE,
1993, pp. 351–360.

[31] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-Level Synthesis for FPGAs: From Prototyping to Deployment,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 30, no. 4, pp. 473–491, April 2011.

[32] P. Horstrand, R. Guerra, A. Rodrı́guez, M. Dı́az, S. López, and J. F.
López, “A UAV platform based on a hyperspectral sensor for image
capturing and on-board processing,” IEEE Access, vol. 7, pp. 66 919–
66 938, 2019.

[33] Specim, Spectral Imaging Ltd, “Specim fx10 datasheet,”
Available Online: https://www.specim.fi/wp-content/uploads/2020/02/
Specim-FX10-Technical-Datasheet-04.pdf, (Accessed on 1 December
2022).

[34] AMD-Xilinx, “Seven Steps to an Accurate Worst-Case Power Analysis
using the Xilinx Power Estimator,” Available Online: https://docs.xilinx.
com/v/u/en-US/xapp1348-power-analysis, (Accessed on 15 April 2023).

[35] Velleman, “User Manual: DVM1200 - Multimeter with USB
interface,” Available Online: https://www.velleman.eu/downloads/1/
dvm1200gbnlfresdplit.pdf, (Accessed on 26 May 2023).

[36] L. Santos, J. F. López, R. Sarmiento, and R. Vitulli, “FPGA implemen-
tation of a lossy compression algorithm for hyperspectral images with a
high-level synthesis tool,” in 2013 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS-2013), 2013, pp. 107–114.

[37] A. Garcı́a, L. Santos, S. López, G. Marrero, J. F. López, and
R. Sarmiento, “High level modular implementation of a lossy hyperspec-
tral image compression algorithm on a FPGA,” in 2013 5th Workshop
on Hyperspectral Image and Signal Processing: Evolution in Remote
Sensing (WHISPERS), 2013, pp. 1–4.

[38] D. Keymeulen, “FPGA implementation of lossless and lossy compres-
sion of space-based multispectral and hyperspectral imagery,” 2016.

[39] D. Fernández, C. González, D. Mozos, and S. Lopez, “FPGA implemen-
tation of the principal component analysis algorithm for dimensionality
reduction of hyperspectral images,” Journal of Real-Time Image Pro-
cessing, vol. 16, 2019.

[40] D. Báscones, C. González, and D. Mozos, “An Extremely Pipelined
FPGA Implementation of a Lossy Hyperspectral Image Compression
Algorithm,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 58, no. 10, pp. 7435–7447, 2020.

[41] ——, “An FPGA Accelerator for Real-Time Lossy Compression of
Hyperspectral Images,” Remote Sensing, vol. 12, no. 16, 2020.

[42] Y. Barrios, A. Rodrı́guez, A. Sánchez, A. Pérez, S. López, A. Otero,
E. de la Torre, and R. Sarmiento, “Lossy Hyperspectral Image Com-
pression on a Reconfigurable and Fault-Tolerant FPGA-Based Adaptive
Computing Platform,” Electronics, vol. 9, no. 10, 2020.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

Julián Caba received the M.S. degree in Com-
puter Science and the Ph.D. from the University of
Castilla-La Mancha (UCLM), Spain, in 2009 and
2018, respectively. He won the Ph.D. category in
the Xilinx Open Hardware Contest in 2017. He is
currently an Assistant Professor with the TSI Depart-
ment, UCLM. His current research interests include
hardware verification methodologies, embedded sys-
tems, high-level synthesis, run-time reconfigurable
systems and heterogeneous distributed systems.

Dirk Stroobandt (S’92–M’98) received the Ph.D.
degree in electrotechnical engineering from Ghent
University, Ghent, Belgium, in 1998. He was a
Visiting Researcher at the University of California
at Irvine, Irvine, CA, USA, in 1997, and at the Uni-
versity of California at Los Angeles, Los Angeles,
CA, USA, from 1999 to 2000. He is currently a
Full Professor at the Computer Systems Laboratory,
Department of Electronics and Information Systems,
Ghent University, where he also leads the research
group Hardware and Embedded Systems with in-

terests in semiautomatic hardware design, run-time field-programmable gate
array reconfiguration, and reconfigurable multiprocessor networks.

Marı́a Dı́az was born in Spain, in 1990. She re-
ceived the Industrial Engineering degree from the
University of Las Palmas de Gran Canaria (ULPGC),
Spain, in 2014, and the master’s degree in system
and control engineering imparted jointly by the
Universidad Complutense de Madrid (UCM) and
the Universidad Nacional de Educación a Distancia
(UNED). She also received the Ph.D. degree from
the ULPGC in 2021 where developed her research
activities at the Integrated Systems Design Divi-
sion of the Institute for Applied Microelectronics

(IUMA). Additionally, she conducted a research stay in the GIPSA-lab,
University of Grenoble Alpes, France, and in the University of Castilla-La
Mancha (UCLM), Spain. Her research interests include image and video
processing, development of highly parallelized algorithms for hyperspectral
images processing, and hardware implementation.

Jesús Barba received the MS and PhD degrees in
Computer Engineering Diploma from the University
of Castilla-La Mancha (UCLM), Spain, in 2001 and
2008 respectively. He is working as Associate Pro-
fessor with the Department of Information and Sys-
tems Technology (TSI) since 2001 and member of
the ARCO research group, located at the School of
Computer Science (UCLM, Spain. Among the open
research lines and interests it is worth mentioning
the following: Low-cost & low power reconfigurable
systems for ubiquitous computing, Reconfigurable

computing platforms for AI algorithms, Heterogeneous Distributed Embedded
Computing and High-level Synthesis Tools.

Fernando Rincón received the degree in com-
puter science from the Autonomous University of
Barcelona, Barcelona, Spain, in 1993, and the Ph.D.
degree from the University of Castilla-La Mancha,
Ciudad Real, Spain. He is currently an Assistant
Professor with the TSI Department, University of
Castilla-La Mancha. His research interests include
system-on-chip integration, HW run-time reconfigu-
ration, and heterogeneous distributed systems.

Sebastián López was born in Las Palmas de Gran
Canaria, Spain, in 1978. He received the Electronic
Engineering degree from the University of La La-
guna, San Cristobal de La Laguna, Spain, in 2001,
and the Ph.D. degree in electronic engineering from
the University of Las Palmas de Gran Canaria, Las
Palmas de Gran Canaria, in 2006.,He is currently
an Associate Professor with the University of Las
Palmas de Gran Canaria, where he is involved in
research activities with the Integrated Systems De-
sign Division, Institute for Applied Microelectronics.

He has coauthored more than 120 articles in international journals and
conferences. His research interests include real-time hyperspectral imaging,
reconfigurable architectures, high-performance computing systems, and image
and video processing and compression. Dr. López was a recipient of regional
and national awards during his electronic engineering degree. He also serves as
an Active Reviewer for different JCR journals and as a Program Committee
Member of a variety of reputed international conferences. Furthermore, he
acted as one of the program chairs of the IEEE Workshop on Hyperspectral
Image and Signal Processing: Evolution in Remote Sensing (WHISPERS) in
its 2014 edition and of the SPIE Conference of High Performance Computing
in Remote Sensing, from 2015 to 2018. He is also an Associate Editor of the
IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, MDPI Remote Sensing, and Mathematical Problems in Engineering
Journal. He was an Associate Editor of the IEEE Transactions on Consumer
Electronics, from 2008 to 2013. Moreover, he has been the Guest Editor of
different special issues in JCR journals related with his research interests.

Juan Carlos López received the M.S. and Ph.D.
degrees in telecommunication (electrical) engineer-
ing from the Technical University of Madrid, in
1985 and 1989, respectively. From 1989 to 1999,
he was an Associate Professor with the Department
of Electrical Engineering, Technical University of
Madrid. From September 1990 to August 1992,
he was a Visiting Scientist with the Department
of Electrical and Computer Engineering, Carnegie
Mellon University, Pittsburgh, PA, USA. From 2000
to 2008, he has worked as the Dean of the School

of Computer Science, University of Castilla-La Mancha. He is currently a
Professor of computer architecture with the University of Castilla-La Mancha.
His research interests include embedded system design, distributed computing,
and advanced communication services. Prof. Lopez is member of the IEEE
and ACM. He is and has been a member of different panels of the Spanish
National Science Foundation and the Spanish Ministry of Education and
Science, regarding the Information Technologies research programs.

