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Abstract. In image processing, a connected components algorithm is a
method used to identify and label the different objects or regions present
in a digital image. This algorithm can be useful for a variety of image
processing tasks, such as object recognition, image segmentation, and
feature extraction. This work presents the implementation of a single-
pass algorithm on an FPGA-based device suitable for high-performance
edge computing vision applications, the Ultra96-V2 computing board.
The design and implementation of the IP core have faced challenges
using the AMD-Xilinx HLS workflow and tools, which require efficient
and optimized use of resources, as well as the re-engineering of the al-
gorithm to comply with the requirements imposed by the development
framework. The performance of the proposed accelerator has been thor-
oughly analysed using the YACCLAB benchmarking framework against
a high-end and a low-end CPU. The results show an expected loss in
performance due to memory and clock frequency limitations. However,
concerning energy efficiency, the hardware multicore architecture outper-
forms the software alternatives with an improvement between two and
five times, depending on the size and complexity of the images.

Keywords: Connected Components · High Performance Edge Process-
ing · Computer Vision · Field Programmable Gate Arrays.

1 Introduction

Connected components (CC) analysis is a crucial step of many applications in
computer vision, consisting of assigning unique labels to each region of an im-
age that has been previously segmented by applying a thresholding process to
differentiate objects from the background. Next, features of each region, such as
area, centre of gravity, bounding box, and pixel value, are extracted based on
their labels with the goal to classify each region into one of multiple classes.

Time complexity and intensive memory usage are two of the main problems
to be faced when it comes to the development of a valid solution for embedded
devices with a limited amount or resources or constraint power budget. Indeed,
this is the context for image processing in the edge, a computing paradigm that
performs image processing tasks locally, near the source of the data, rather than
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sending all the data to a centralized cloud or data center for processing. Image
processing in the edge can also enable real-time or near-real-time analysis of
image data, which can be critical in applications such as autonomous vehicles,
surveillance systems, or medical imaging.

Despite the fact there have been multiple CC algorithms over time, only
single-pass algorithms are actually suitable for FPGA-based implementations
due to the reduction in memory bandwidth which represents the major bottle-
neck for such class of devices [11]. This class of CC algorithms are also suitable
for stream image processing.

In the paper [7] the authors present a scalable architecture for efficient, paral-
lel processing of connected components by optimising performance through the
use of multiple processing units. However, it is important to note that the im-
plementation of the algorithm was performed on a high-end FPGA, which may
restrict its applicability on less capable devices. In addition, extensive testing
with synthetic datasets was not carried out to obtain performance comparisons
with other approaches. Therefore, further research is required to evaluate the ef-
fectiveness and scalability of the algorithm in different hardware configurations
and conditions.

The paper [9] presents a novel hardware architecture for connected compo-
nent labeling in embedded image processing systems. The proposed architecture
achieves high processing speeds by effectively managing label collisions through
an innovative design that combines collision resolution and DMA core config-
uration in parallel. However, the authors did not perform tests with synthetic
images on their architecture.

In most works in the literature, only theoretical measures derived from archi-
tecture synthesis are taken into account, in this work, the modeling, design and
implementation of the single-pass CC analysis algorithm originally proposed by
Bailey et al. in [1] and later optimized in [8] is revisited and adapted to Xilinx-
AMD Vitis design flow. The main goal is to evaluate the performance and energy
efficiency of the FPGA implementation against state-of-the art software alter-
natives running on high-end and low-end processor platforms. It is out of the
scope of this paper to compare our hardware solution in terms of resource usage
(mainly BRAM memory) with other proposals due to the use of different FPGA
architectures and synthesis tools. On top of this, the proposed HLS model of
the core has been generalize to enable its benchmarking by means of YACCLAB
[5] framework. The architecture allows multicore configurations, worst case label
counter as well as resolutions beyond the common 640x640 resolution reported
in the majority of the literature [10][8], which increases the demand of resources.

2 HW-CC accelerator

Although the algorithm proposed by Bailey et al. [1] is designed taking into ac-
count FPGA-based computing devices avoiding, for example, the need to store
the whole image in BRAM memories, it still presents challenges when it comes to
pack it as a fully functional core for FPA-SoCs architectures such as the Xilinx



Title Suppressed Due to Excessive Length 3

ZynQ-UltraScale+. Also, limited performance and resource analysis have been
made, limiting the validation to a specific size of input images and complexity.
Therefore, a complete view of the actual development of a FPGA-based solutions
is missing, preventing a fair benchmarking against software solutions. On top of
this, facing the modeling of the architecture and logic of the algorithm using
High-Level Synthesis (HLS) technology demands the re-engineering of the orig-
inal design so as to make it compliant with the semantic and syntax constraints
of HLS tools.

The main contribution of this work is the development of the HW-CC acceler-
ator, a fully parameterized IP core ready-to-use in Xilinx’s FPGA-SoC platform.
Parameterization allows its use for a wide range of input images and scenarios
(see 3) making it our solution flexible to adapt to different application and target
platform requirements (memory availability, latency, etc.). This flexibility comes
to a price, mainly due to the large memory needs for storing intermediate data
when working with big images; for example, the data table, a data structure that
holds statistics of the label regions, depends on the width (W ) and the height
(H) being W/2×H/2 the theoretical maximum. For this reason, in the proposed
solution, mechanisms had to be developed to overcome this handicap, making
an low-end FPGA-based platform suitable for CC algorithms.

With regard to the parameterisation mentioned above, this mainly deals with
aspects related to the memory requirements of the system to guarantee its correct
operation. Firstly, by parameterising the size of the image to be processed, the
sizing of the necessary internal memory structures is crucially determined. This
is of vital importance, as these structures are directly dependent on the size of
the image. Another key aspect of the design is the possibility to parameterise the
size of the cache system. This parameterisation is relevant in several aspects, such
as the number of BRAMs used by this structure and the number of possible read
or write misses that can occur. These factors, in turn, impact the performance of
the algorithm. In addition, the system parameterisation also provides the option
of using a one-way or two-way cache system, which may be of interest depending
on the specific memory access patterns of certain types of images.

This architectural proposal represents an important contribution in address-
ing the challenges posed by the algorithm proposed above. By implementing an
instance-based division of labour approach, a proper distribution of the workload
in processing a complete image is achieved. This strategy allows harnessing the
potential for parallelism inherent in processing image sections simultaneously, re-
sulting in improved system performance and scalability. By splitting the overall
task into smaller instances, greater flexibility is achieved by adapting to different
applications and platform requirements. However, this division implies the de-
velopment of mechanisms to maintain consistency in the algorithm’s collection
of statistics across instances.

Fig. 1 sketches a high-level view of the HW-CC architecture which have been
modeled in Vitis HLS C/C++. Memory interface uses both AXI-Stream and
AXI-Memory ports so the IP core can be easily integrated with the Processor
Subsystem which runs the firmware for platform and peripheral configuration,
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Fig. 1. Architecture of the HW-CC accelerator

Fig. 2. High-level system composition
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DMA transfer management and execution of the Label Merging step. Fig. 2 also
shows the composition of the high-level system with the use of several instances
of the accelerator working in parallel.

The HLS model defines the control and the memory elements, along with its
mapping to FPGA resources, that realizes the algorithm in the most optimal
way via the use of the appropriate pragmas and model parameters.

2.1 Memory Elements

– Neigbourhood Context + Row Buffer: These two elements are respon-
sible for temporarily storing the information necessary to determine the la-
beling assignment for groups of pixels.
On one hand, the row buffer temporarily stores the labels generated by the
algorithm in the previous row, similar to a sliding window filter. The size
of this row buffer in memory is directly determined by the number and
size of the elements it will contain. In other words, the number of elements
is directly related to the pixel width of the image, and the size of these
elements coincides with the number of bits needed to encode the maximum
possible number of labels. This, in turn, depends on the number of rows and
columns in the image. This parameterization makes the size of this structure
entirely customizable in the design.
On the other hand, the neighborhood context is formed by the registers that
spatially correspond to the pixels adjacent to the one being evaluated. These
registers play a crucial role in selecting the value assigned to each pixel.

– Index Table: An array that holds the value of the tag to which a given
index points. The size of this array can be parameterized in the model to
fit the typical input image requirements. Another parameter of the model is
the maximum number of labels, which determines the size of the word for
the Index Table.

– Index & Tag Stack: This is a data structure used to merge two regions
after each row is processed based on the values of their tags. In order to
exploit the fact that index and tag information access is independent, it was
decided to apply the pragma ARRAY PARTITION in order to allow parallel
access to both values. The size of the stack is also a parameter of the model.

– Memory Manager + Data Table + Cache: The Data Table is the struc-
ture in which the statistics related to the labels are stored. In the proposed
implementation the coordinates of the upper-left corner, width and height of
each region is provided. The memory requirements of the Data Table would
rapidly exhaust the available BRAMs in the FPGA fabric, specially for high
resolutions. In order to make the HW-CC accelerator suitable for a variety
of sizes and complexities, it has been decided to implement a simple cache
system that allows the core handle large image sizes, without sacrificing the
speed of access to the data. This module is also in charge of checking, reading
and writing the blocks in the cache memory with respect to the on-board
RAM when necessary. Given that during the algorithm’s operation, it grad-
ually assigns new labels to the new regions it passes through. In this process,
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space is occupied in the Data Table corresponding to these new labels. At
the same time as this process is taking place, the merging of several pre-
viously assigned tags is also taking place. In this way, access to the entries
in the table is usually done in an alternating manner. When implementing
the cache, this memory access pattern is a problem because there are areas
of the image in which data table entries belonging to different data blocks
are accessed consecutively. This situation results in a high number of cache
misses, with the respective execution time spent in having to replace the
data block multiple times. Based on these characteristics of the memory ac-
cess patterns, it was decided to implement a 2-way cache system in order to
avoid unnecessary replacement of data blocks.

2.2 Algorithm Stages

Label Selection (HW) This stage is performed once for each pixel of the
image, where the Neighbourhood Context is evaluated to determine which label
will be generated in a given pixel. The following situations may arise in this
process:

– Generate a new label, whereby a new record has to be created in the data
table. To achieve this, a counter is employed, starting with the value 1, and it
increments each time this operation is performed. This counter is responsible
for being assigned to the label. In this process, the row and column values
in which this label is contained are also stored.

– Assign an existing tag, which requires accessing the data table to update the
statistics related to that tag.In this process, the parameters of the row and
column in which the label is contained, as well as its area, are updated.

– There are two possible tags in the Neighbourhood Context so they are stored
in the Index & Tag Stack to be resolved later, the smaller of the two is
assigned to the pixel and the statistics are updated in the data table.

Stack Processing (HW) This stage is performed for each row of the image
that has completed the algorithm. It accesses the Index & Tag Stack to perform
the merge process between tags, which accesses the index table to update the
corresponding indexes. Thanks to the implementation of this structure, potential
conflicts that may arise in the resolution of labels that have been merged when
consumed from the row buffer in the next row are resolved. When merging these
labels, the values related to the rows and columns in which the new merged label
is contained, as well as its area, are also updated.

Flush Index Table (HW) Once the algorithm has finished traversing the
image, the cached data blocks are updated in DDR. Subsequently, the entire set
of information generated by the algorithm needs to be transferred from internal
memory to the DDR memory of the SoC. This step is essential for the data to
be readily available and integrated into an image analysis system.
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Label Merging (SW) Once the FPGA component is finished, the processor
goes through the Index Table and the Data Table contained in the RAM memory
to perform the final merging process between the different regions in order to
obtain the final number of labels and their statistics. This step was moved to the
software realm due to be a control intensive tasks with irregular memory pattern
access, an scenario where the processor performs better than the FPGA.

3 Results

In this section, we present the results of our performance evaluation of various
connected components labeling algorithms using the YACCLAB [5] benchmark-
ing framework. Our evaluation aimed to compare the speed and energy efficiency
of the proposed HW-CC accelerator IP against different algorithms on a set of
test images provided by YACCLAB. Software benchmarks were run on: (1) a
12th Gen Intel(R) Core(TM) i7-12700K (3.6GHz, 64GB DDR5) executing an
Ubuntu 20.4 GNU/Linux distribution ; and (2) a Intel(R) Celeron(R) N5095
(2.0GHz, 8GB DDR4) executing an Ubuntu 22.4 GNU/Linux distribution. In
both cases the test suite was compiled with GCC 11.3. By incorporating both a
high-end workstation processor and a low-end CPU commonly present in com-
mercial edge computing solutions, experimental validation can provide a better
understanding of the proposed accelerator’s capabilities.

The test suite comprised the out-of-the-box connected component algorithms
that come with YACCLAB, namely: Scan Array-based with Union Find [12]
(SAUF), Block-Based with Decision Tree [6] (BBDT), Pixel Prediction [4] (PRED),
Directed Rooted Acyclic Graph [3] (DRAG) and Spaghetti Labelling [2].

The dataset used for experimental validation comprised a selection of the
YACCLAB 2D subset which consists of binary images with labeled connected
components. The dataset includes both synthetic images and real-world images
from various sources. In this work, we test the HW-CC accelerator for edge image
processing over the MIRflickr (25K images, average size and connected compo-
nents: 0.17 megapixel and 495, respectively), Hamlet (104 images), Tobacco800
(1290 documents, 150-300 DPI and 1200x1600 to 2500x3200 resolutions), 3DPeS
and synthetic random noise image subsets. A special note has to be made about
the latter it allows to objectively test the scalability and efficacy of different
algorithms. This subset provides ten images for each combination of size (32x32
up to 4096x4096 in steps of x2) and density (10% to 90%), resulting in a total
of 720 images.

The Ultra96-v2 prototyping platform has been used to deploy and test the
processing accelerator core. The Ultra96-v2 board is based on the Xilinx Zynq
UltraScale+ MPSoC which integrates programmable logic and a four-core 64-
bit Arm Cortex-A53 processor. The ZU3EG chip embedded in the platform is a
low-end FPGA with modest capabilities and low power budget which makes it
suitable for edge computing applications. Version 2021.1 of the Xilinx toolchain
(Vitis HLS, Vivado and Vitis Unified Software Platform) has been used to model
the HW-CC IP core, design and synthesize the platform and deploy the whole
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solution. No operating system support is required for running the firmware which
executes on baremetal.

First, we evaluated the performance of the proposed solution against the
real-world subsets selected. Though the architecture of the HW-CC accelerator
is flexible and allows multiple parameter configuration, for this experiment an
aggressive strategy was proposed in order to obtain the maximum performance.
Therefore, row buffer size was established to 4K words, label data memory to 64K
and cache block memory to 1K. The number of accelerator cores instantiated in
the FPGA fabric is four, which raises the utilization of BRAM resources to 83%
of the total available in the device. Post-synthesis results showed that it was
possible to configure a 175MHz clock to drive the logic. However, we establish
a conservative approach in this regard in order to avoid unexpected on-board
behaviour. Thus, a safe 150MHz clocking configuration was set.

Table 1. Average run-time test (ms) for real-image subset

MIRFlickr 3DPes Hamlet Tobacco Avg. Gain

HW-CC-150 1.71 2.73 19.77 36.92 -

Intel i7-12700K

SAUF 0.44 0.61 4.96 7.65 -4.29x

BBDT 0.36 0.35 3.44 4.93 -6.45x

PRED 0.54 0.72 6.92 10.52 -6.33x

DRAG 0.36 0.35 3.44 4.91 -6.46x

Spaghetti 0.2 0.18 1.89 2.68 -11.99x

Intel Celeron N5095

SAUF 1.46 2.76 22.19 37.33 -1.01x

BBDT 0.88 1.33 13.86 22.96 -1.76x

PRED 1.49 2.87 22.96 38.69 +1.02x

DRAG 0.87 1.33 13.86 23.03 -1.76x

Spaghetti 0.41 0.53 5.16 7.89 -4.46x

Table 1 presents the average execution times for all the targeted image sub-
sets. The results show a significant loss in performance compared to the i7 proces-
sor, and a moderate decrease in performance in the case of the Celeron processor.

The most attractive feature of the Zynq UltraScale+ architecture for edge
computing applications is its efficiency in terms of power consumption. Average
energy intake for our HW-CC has been measured using the interface provided
by the on-board Platform Management Unit resulting in 3.74W during test
execution. In the case of the i7 processor, powerstat command line tool has
been used to monitor the increment in power consumption through the RAPL
(Running Average Power Limit) interface; an average of 31.4W was observed.
The Celeron-based computing platform had, however, to used a external energy
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consumption meter which reported a sustained increment of 10.3W during test
execution.

Table 2. Gain in the average energy efficiency (J) for Real-Image Subset. HW-CC
versus Intel i7 & Celeron.

SAUF BBDT PRED DRAG Spaghetti

Intel i7 1.87 1.24 2.56 1.24 0.67

Intel Celeron 2.87 1.75 2.97 1.76 0.63

Table 2 shows the comparison of the efficiency, expressed as Joules, broke
down by subset and algorithm. Average results expose a consistent cross-platform
gain in all cases but the Spaghetti algorithm which outperform the rest due to
its low execution time. It is important to note that all the algorithms evaluated
achieve identical results in terms of region labelling. This observation demon-
strates the consistency and accuracy of all the approaches analysed in this study
in terms of their ability to identify and assign labels to the different regions
present in the image.

Fig. 3. Density test results.
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In order to validate the performance and scalability of a solution, YACCLAB
includes a set of random generated images that allows the execution of density
and size tests. The density and size values mentioned above refer directly to
the number of regions to be labelled in the image. These values are randomly
generated and represent the granularity of the noise present in the image. The
impact of this test is mainly evident in the total number of regions present in the
image, as well as in the size of each region and the memory access pattern used by
the algorithm. These aspects are important considerations as they influence the
performance of the system. Figures 3 and 8 depict a comparison of run-times for
each software algorithm and the 4-core 150MHz version of the proposed HW-CC
accelerator. In the figure 7, the difference between images with different density
factors can be observed.

Fig. 4. 0.1 Fig. 5. 0.3 Fig. 6. 0.7

Fig. 7. Example of synthetic images in YACCLAB dataset with different intensities.
It directly stresses the algorithm performance.

Average execution time is stable for HW-CC with slight higher values as as
the density increases broken by a peak on 0.4 foreground density images as it can
be seen in Fig. 3. Comparison to i7 processor shows a performance degradation of
≈ −2x for all algorithms but Spaghetti which reaches −3.03x with a maximum
loss of 5.76x for 0.9 density images. However, HW-CC is faster than the Celeron
processor in all cases - SAUF (35.9%), BBDT (4.2%), PRED (32.6%), DRAG
(3.4%) - but, again, Spaghetti (1.72x slower in average with a maximum loss of
3.07x for 0.9 density images).

Regarding size tests, the performance of the proposed accelerator maintains
the same pattern across processors and algorithms. As it can be seen in Fig. 8,
HW-CC core maintains the linear dependency of execution time as its software
counterparts. Average performance loss versus i7 processor is −2.14x. Taking
into account that Intel i7 processor power consumption is approximately ten
times the energy the FPGA needs, it results in a ≈ 5x improvement in terms
of energy efficiency while maintaining a fair computing capability for a device
to be deployed at the edge of the computing infrastructure. As to the Celeron
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Fig. 8. Size test results.
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CPU, average loss in performance is −1.09, highly penalized by the efficiency of
Spaghetti algorithm (1.82x better). In the other cases, HW-CC is 10% faster.
Overall, our FPGA-based solution is ≈ 2.5 times more efficient than the Celeron
computing platform.

4 Conclusions

In this work, the design and development of a hardware accelerator architecture
for efficient analysis and labeling of components in images have been carried
out, emphasizing the trade-off between computational power and energy con-
sumption. Targeting embedded computing platforms deployed at the edge of
information acquisition, processing, and transmission infrastructure (e.g., IoT
platforms), the analysis of results considers not only performance but also the
energy needs of the solution. Ultimately, the envisioned platforms for the final
application involve a processing device based on an SoC-FPGA and powered by
a battery, emphasizing the importance of energy efficiency.

Comparing with previous contributions in the state of the art is challeng-
ing as many works often lack necessary information, target FPGA devices from
previous generations, and lack standardization in terms of conducted tests and
utilized images, which directly impacts processing latency dependent on com-
plexity and size. As a next step, we will work on developing a comparative
framework and information compilation to objectively evaluate our solution in
comparison to other state-of-the-art works.
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