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Abstract

The automation of insect pest control activities implies the use of classifiers to monitor
the temporal and spatial evolution of the population using computer vision algorithms. In
this regard, the popularisation of supervised learning methods represents a breakthrough in
this field. However, their claimed effectiveness is reduced regarding working in real-life con-
ditions. In addition, the efficiency of the proposed models is usually measured in terms of
their accuracy, without considering the actual context of the sensing platforms deployed at
the edge, where image processing must occur. Hence, energy consumption is a key factor
in embedded devices powered by renewable energy sources such as solar panels, particularly
in energy harvesting platforms, which are increasingly popular in smart farming applications.
In this work, we perform a two-fold performance analysis (accuracy and energy efficiency) of three
commonly used methods in computer vision (e.g., HOG+SVM, LeNet-5 CNN, and PCA+Random
Forest) for object classification, targeting the detection of the olive fly in chromatic traps.
The training and testing of the models were carried out using pictures captured in various
realistic conditions to obtain more reliable results. We conducted an exhaustive exploration of
the solution space for each evaluated method, assessing the impact of the input dataset and
configuration parameters on the learning process outcomes. To determine their suitability for
deployment on edge embedded systems, we implemented a prototype on a Raspberry Pi 4 and
measured the processing time, memory usage, and power consumption. The results show that
the PCA-Random Forest method achieves the highest accuracy of 99%, with significantly lower
processing time (approximately 6 and 48 times faster) and power consumption (approximately
10 and 44 times lower) compared with its competitors (LeNet-5-based CNN and HOG+SVM).

Keywords: Insect Pest Monitoring, Olive fly, Edge Computing, Energy Harvesting, Computer Vision,
Artificial Intelligence
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1 Introduction

Currently, insect pests pose one of the greatest
risks to crops on farms. To effectively control these
pests, it is essential to accurately estimate the
population of harmful insects in the surrounding
environment. The insect population was estimated
by counting the number of individuals captured in
a series of chromatic traps that use pheromones to
attract a specific type of specimen. Typically, this
counting process is performed manually by a pest
prevention technician who visually identifies the
individuals. Counting insect populations is a cru-
cial step in assessing the risk that insects pose to
farms, enabling the implementation of preventive
measures to mitigate potential damage.

The manual collection of data and counting
of insects have certain limitations, including con-
straints on the quantity and frequency of these
tasks. Additionally, human error can occur. There-
fore, there is significant interest in automating this
process. To enhance the efficiency and scalability
of pest control systems, it is crucial to develop
methods capable of remotely analysing visual
information acquired daily. Thus, the response
time can be significantly reduced, allowing for
timely mitigation of the negative effects of insect
pests with minimal resource usage. Moreover,
these methods will have a positive impact on the
ecosystem. However, individual insect identifica-
tion presents challenges because of the wide range
of orientations in which they may be attached to
the trap [1] [2].

Computer vision techniques enable the
automation of insect population counting in chro-
matic traps. By leveraging advanced algorithms
and image processing, computer vision systems
can accurately analyse the visual information cap-
tured by cameras. These systems can recognise
and identify individual insects, allowing efficient
and precise population estimation. The use of
computer vision eliminates the need for manual
counting by pest control technicians and offers
a faster and more reliable approach to insect
population assessment.

This paper proposes a comprehensive approach
for the application of a series of computer vision
algorithms coupled with machine learning tech-
niques to accurately identify the presence of olive
fruit flies in chromatic traps, while considering the
energy dimension. On the one hand, the developed

prototype is capable of providing a count of the
detected individuals using a robust method, tested
with actual pictures of chromatic traps. Working
in a noncontrolled environment introduces several
challenges that have been properly addressed in
this study. This is in contrast to the majority of
related literature reviewed, which often relies on
ideal or controlled pictures as a starting point.
On the other hand, the precision and accuracy
results of the ML models examined in this study
were compared with the computational resources
required and their efficiency to select the opti-
mal solution for image processing on edge devices
powered by an energy harvesting infrastructure.

The selection of the three computer vision
methods was driven by several factors, includ-
ing: (1) their maturity and extensive practical
experience in similar computer vision applications;
(2) their wide adoption and familiarity within
the research community; and (3) their demon-
strated high accuracy and performance in classifi-
cation problems. Thus, the final three algorithms
considered are HOG+SVM, LeNet-5 CNN, and
PCA+Random Forest.

In the next sections, the performance achieved
by the three selected methods, as well as a thor-
ough analysis of the impact of several factors (e.g.
input format or model parameters) during the
training phase, will be disclosed, providing a valu-
able tool for developers to better understand how
the models develop in actual working conditions.

1.1 Project Contextual Background

This work is carried out as part of a project
aiming to develop a revolutionary electronic chro-
matic trap called BIoTrap 4.0. This trap integrates
three fundamental technologies: IoT (Internet of
Things), computer vision algorithms, and the edge
computing paradigm. BIoTrap 4.0 is built on a
Raspberry Pi 4 Single Board Computer (SBC),
to which several essential modules are connected,
including a camera module, communication mod-
ule, and power management module. Figure 1
visually depicts the comprehensive composition of
this system.

The camera module is a vital component of
the trap and is responsible for capturing images
of insects. These images are analysed locally on
the device, eliminating the need for continuous



Springer Nature 2021 LATEX template

Article Title 3

(a) BIoTrap Schematic

(b) BIoTrap Hardware

Fig. 1 BIoTrap Prototype

internet connectivity and reducing data trans-
mission requirements. This functionality proves
highly valuable, especially in agricultural environ-
ments where network availability and bandwidth
limitations are significant concerns.

To achieve efficient long-distance connectiv-
ity, the BIoTrap 4.0 prototype incorporates LoRa
(Long Range), a wireless communication technol-
ogy. LoRa uses a low-power radio protocol with
widespread coverage, enabling long-range commu-
nication while minimising energy consumption.
Furthermore, the use of unlicensed frequencies
simplifies deployment and reduces costs. This
technology is particularly well-suited for applica-
tions requiring broad coverage and efficient data
transmission, such as smart agriculture.

Energy independence is another notable fea-
ture of BIoTrap 4.0. To achieve this, a lithium-
polymer (LiPo) battery is integrated and con-
nected to a 12W solar panel through a charge
controller. This setup allows the trap to harness
ambient conditions at the deployment location
for energy generation. By leveraging solar energy,

BIoTrap 4.0 becomes self-sufficient, eliminating
the need for external power sources. In addition,
the system can be programmed to enter a sleep
mode and resume operation according to a pre-
defined schedule, optimising energy use. The goal
is to find an optimal solution that balances per-
formance, accuracy in insect identification and
energy demand.

Construction of the olive fruit fly image
dataset is another key aspect of the project. To
achieve this, a labelling application is used in
which experts select image fragments that corre-
spond to a positive match with this pest as shown
in figure 2. These methods become valuable tools
for expert decision making, while providing feed-
back for selecting parameters of these methods.
In this way, a cycle of continuous improvement is
established where the labelled data allows for the
refinement and optimisation of the image analy-
sis algorithms used in the BIoTrap 4.0 electronic
trap.

Fig. 2 Advisor app

Given that the system follows the energy har-
vesting paradigm, the methods used must be
aware of the energy resources and minimize energy
consumption while maximizing accuracy obtained.

This multi-view analysis approach represents
a significant contribution, providing valuable
insights to developers of edge artificial vision
applications regarding the implications of different
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factors in the decision-making process. Conse-
quently, it enhances the design and performance
of their applications.

2 State of the art

Until recently, one of the most popular methods
in several entomological classification studies was
Support Vector Machines (SVM) combined with a
feature extraction algorithm such as Histogram of
Oriented Gradients (HOG) [3] [4] [5]. However, the
feature extraction stage is highly sensitive to the
environment in which pictures of individuals are
taken to build the dataset. Consequently, many
of the previous papers on insect detection and
classification were developed in controlled envi-
ronments or even based on entomological images
that differ from the trapping conditions in a real
environment [6] [7] [8]. Weather or the presence
of other objects in the image often pose signifi-
cant obstacles in establishing uniform processing
parameters for all captured images. Variations in
lighting conditions and the potential presence of
dust, plant fragments, or other insects adhering
to the chromatic trap contribute to these chal-
lenges. Additionally, feature extraction is typically
a costly and unreliable process, as mentioned ear-
lier. One of the primary challenges in designing
an image processing pipeline is to obtain individ-
ual cut-outs of the regions of interest within the
chromatic trap. This step is crucial before pro-
ceeding to the classification process using machine
learning algorithms.

For all these reasons, the use of Convolutional
Neural Networks (CNNs) has recently become the
dominant approach for solving problems related to
object classification or detection in images across
various fields, including the automatic detection
of insects [9] [10] [6] [8]. This is primarily due
to two factors: (1) the robustness of the predic-
tions even under varying conditions of the input
dataset images, provided that the network is prop-
erly trained with a diverse dataset, and (2) the
elimination of the need for a preprocessing stage.
However, the Achilles heel of CNNs lies in the
time-consuming training process, which is per-
formed only once and requires expert input to
avoid undesirable network behaviour. In brief, the
use of CNN-based systems has captured the atten-
tion of the research community and has partly
overshadowed other methods that could be worth

considering when energy cost is a factor in the
decision-making process.

In this article, in addition to SVM+HOG and
CNN, the Principal Component Analysis (PCA)
algorithm has been investigated, drawing inspira-
tion from its success in specific works in hyper-
spectral and multispectral image analysis [11] [12],
and its application in studying the influence of
pathogenic diseases on crops using E-noses [13].
The combination of PCA and Random Forest can
be beneficial in various scenarios. First, PCA helps
to reduce the dimensionality of the dataset, which
can be especially useful when working with highly
correlated features or when reducing noise and
redundancy in the data. This can improve compu-
tational efficiency and prevent model overfitting.
Moreover, PCA can help identify the most impor-
tant and representative features of the dataset,
which can enhance the performance of Random
Forest by reducing noise and focussing on the most
informative characteristics.

In recent years, Spike Neural Networks (SNNs)
have emerged as a captivating paradigm in the
field of artificial intelligence, drawing inspiration
from the intricate communication patterns of neu-
rones in the human brain. The significance of
SNNs lies in their unique ability to capture tem-
poral dynamics, making them well-suited for tasks
involving time-series data and dynamic informa-
tion processing . Unlike conventional neural net-
works, SNNs process information through discrete
events or ’spikes,’ enabling event-driven compu-
tation and promising energy-efficient solutions,
particularly in edge-based image classification
applications.

However, the transition from Convolutional
Neural Networks (CNNs) to SNNs in the realm
of image classification introduces several note-
worthy challenges. First, the conversion process
itself, involving the transformation of continuous
activations from CNNs into discrete, event-driven
spikes characteristic of SNNs, demands careful
consideration and exploration of suitable encod-
ing mechanisms. For instance, in the work by
[14], a set of 5x5 overlapping receptive fields,
weighted according to Manhattan distance, is used
to encode 16x16 regions of input pixels. The neu-
ral response is the membrane potential map, which
is further converted into spike trains, with the
spiking frequency proportional to the potential.
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The need for novel training algorithms [15][16]
and techniques tailored to the unique charac-
teristics of SNNs has become obvious. In [17],
the HESFOL model is proposed, utilising entropy
theory to establish a gradient-based few-shot
learning scheme in a recurrent SNN architecture.
This model effectively improves the accuracy and
robustness of the learning process, as demon-
strated in image classification using the Omniglot
dataset.

Furthermore, challenges related to hardware
constraints and efficient implementation add com-
plexity, given that the energy-efficient promise of
SNNs necessitates specialised hardware architec-
tures. Lakymchuck et al. [14] introduce a simpli-
fied and computationally efficient model of the
spike response model (SRM) neuron with spike-
time-dependent plasticity (STDP). The proposed
solution combines spike encoding, optimal net-
work topology, and an innovative neuron mem-
brane model, achieving successful learning and
classification of black and white images (Semeion
dataset) with up to a x20 computing speed-up
compared to other classic neuron models.

Beyond handwritten digit recognition, SNNs
have been successfully validated in fields such as
the classification problem of hyperspectral images
in the edge computing environment [18], gesture
recognition [19] or sonar image target classifica-
tion [20].

While SNNs demonstrate promising features
for embedded computing applications, the empha-
sis on static image analysis in this study, where
temporal dynamics may not be fully utilized, has
led to the decision to postpone the incorpora-
tion of SNNs to future versions of the BioTrap
4.0 system. The necessity to meticulously explore
various neural models and alternative approaches
for encoding input stimuli poses challenges that
require a custom and careful consideration.

3 Materials and methods

3.1 Dataset creation

For this work, a dataset was created from actual
images of chromatic traps taken on four differ-
ent farms under variable lighting conditions. The
original images are in RGB format and have a
resolution of 3840x2160 pixels.

A total of 3043 clips of regions of interest
(ROI) were extracted for their subsequent classi-
fication following an approach that will be briefly
introduced for the shake of completeness.

The extraction of ROIs (see Figure 3) is
influenced by the functional and not functional
requirements of the platform where the algo-
rithm will be deployed (that is, a RaspBerry PI
4 device powered by solar panels feeding a bat-
tery) and the image acquisition conditions, which
are a real-life environment with variable light-
ing conditions, wind and dust. Thus, efficiency
in the use of computing resources and variabil-
ity management are two key driving factors for
image preprocessing stage. Reducing the resolu-
tion of the picture and converting it to greyscale
saves memory and computing time, while equali-
sation makes the process more resilient to changes
in ambient conditions during image capturing.
Once the picture has been cleaned (threshold-
ing) and potential ROIs enhanced (morphological
operations), the connected components the mask
parameters (coordinates, area, etc.) to extract the
final clips.

Subsequently, and the objective of the work
presented in this article, it follows a classifica-
tion process of these clips according to whether
they correspond to regions where the olive fruit fly
appears or not, in order to obtain the population
indices. To be able to perform the training, these
images were previously labelled by an expert in
the field who has the knowledge to discern between
what is and what is not olive fruit fly.

Thus, from the dataset of 3043 images, we
obtain 358 elements of the positive class and 2685
of the negative class. It is worth recalling that
such cut-outs were obtained directly from the
output of the actual segmentation algorithm fed
with real images. Thus, reproducing the working
conditions provides input ROIs unideal (e.g. over-
lapping individuals, noisy background, etc.) but
ensures a fair ground for all the machine methods
to be tested, so the achieved performance levels
are more reliable.

Figure 4 shows four examples of ROIs
extracted after the segmentation phase with
(Figure 4a) and without (Figures 4b, 4c and
4d) olive fly. As it can be seen, additional ele-
ments may appear because the size of the region
is fixed (170x170 pixels). These elements could
influence the learning process for the different



Springer Nature 2021 LATEX template

6 Article Title

Fig. 3 Process of segmentation and extraction of ROIs in chromatic trap images

(a) Positive (olive
fly)

(b) Negative (com-
mon fly)

(c) Negative (small
insect)

(d) Negative (lady
bug)

Fig. 4 Example of dataset images, extracted by the seg-
mentation algorithm

machine learning methods to be studied, by intro-
ducing noise. This will also be evaluated in this
work. Therefore, a background extraction process
is additionally applied to this initial set of image
clips, leaving only the region that was identified
as an object or component (see Figure 5b). This
process is simple; after stage 6 of the segmentation
process (Figure 3) a binary mask is obtained from
the connected components algorithm. This binary
mask is then applied to the image clips, leaving
the foreground element clean.

A little more than 3000 images is not a huge
set to perform a good training of a classifier.

Therefore, it is necessary to perform a ”data aug-
mentation” process. For each image of the original
set, six new images are generated as the result of a
clockwise rotation operation (90º, 180º, 270º and
360º) and mirroring on the horizontal and vertical
axes. After this process 2872 images for the pos-
itive class and 21480 for the negative class made
up the dataset.

3.2 Training procedure and metrics

The input images to the system have a resolu-
tion of 170 pixels wide by 170 pixels height. These
images were normalised (i.e. the values of all its
pixels were recalculated to lie in a floating point
range between 0 and 1) before training the CNN
and PCA+Random models. Normalization is a
key operation to avoid problems in the internal
calibration of these algorithms during training,
which could be altered by outliers. On the other
hand, it is not necessary to normalise the image
set for the SVM+HOG use case.

When evaluating the performance of the mod-
els, two scenarios were analysed, each with a differ-
ent dataset: regions with and without background
extraction.

In terms of training, various situations have
been explored using unbalanced and balanced
datasets. Training with an unbalanced dataset
respects the proportion of examples found in the
real samples. This translates into using 18000
examples of the negative class and 2800 of the
positive class. In the case of a balanced dataset,
training was performed using 2800 instances of
each class. The objective is to determine whether
the prediction quality improves by balancing the
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(a) (b)

Fig. 5 Example of dataset images for training, with (a)
and without (b) background subtraction

dataset despite having fewer samples to train the
models.

Regardless of the dataset used and its char-
acteristic (balanced versus unbalanced), it is split
in a ratio of 80/20, intended for the training and
test sets respectively. The training set, as its name
suggests, will be used to train the model in order
to subsequently perform the prediction on the test
set and evaluate the results.

The training was performed using the cross-
validation method, in which the training set itself
was divided into 10 parts. One of the ten parts is
selected as the test, and the rest are used for train-
ing. In cross-validation this, process is performed
as many times as divisions are made to the set,
so that the test is performed on a different subset
each time.

In this work, Python was used for the devel-
opment of the training algorithm and the machine
learning models, relaying on libraries and soft-
ware belonging to the Tensorflow and Scikit Learn
environments.

In the following sections, the three selected
models for evaluation are introduced: (1) His-
togram of Oriented Gradients for feature extrac-
tion combined with a Support Vector Machine for
classification; (2) Convolutional Neural Networks
and; (3) Principal Components Analysis combined
with Random Forest.

3.3 Evaluated models

3.3.1 HOG+SVM

HOG (Histogram of Oriented Gradients) is a
method for obtaining descriptors or features that
is widely used in computer vision and image pro-
cessing applications. This algorithm assumes that
the information in an image can be described and
summarised by the distribution of gradient vectors
calculated from groups of image pixels. This type
of information is relevant when we want to keep
the information that makes sense to distinguish
shapes, as in our case, discarding non-necessary
information such as color, etc.

To do this, the image is divided into small
square subregions called cells and, a histogram of
gradient vectors is generated for all pixels con-
tained within each cell. The final result, or result-
ing feature vector, arises from the concatenation
of each of these individual histograms.

To infer knowledge from the histogram infor-
mation, one of the methods used is the SVM (Sup-
port Vector Machines) classifier. Roughly speak-
ing, an SVM is a model that represents the sample
points in space, trying to separate the points in
classes by means of a hyperplane.

The function that computes the gradient his-
togram has several parameters that can be con-
figured. First, a series of tests was performed to
experimentally determine the best value for the
cell size parameter. Taking into account that the
size of the input image is 170×170 pixels, tests
were performed with 16 different cell sizes, with
values of pixel numbers in rows and columns
within the set (85,42,21,10) for both RGB and
greyscale datasets, with an unbalanced combina-
tion of positive and negative examples.

Because of the tests (see subsection 4.1), a
10x10 pixels cell size was selected due to its bet-
ter robustness to noise. Thus, for each image cell
(a total of 17×17 cells) 100 gradient vectors are
obtained, which are summarised in a 9-set his-
togram. Each set represents a range of angles 0,
20, 40, 60 ... 160 (an unsigned gradient approxi-
mation has been used, as it is done in pedestrian
detection application) and each gradient can con-
tribute proportionally to two sets (or ranges of
angles) depending on the direction value (e.g., if
the direction value is 10, it will contribute equally
to set 0 and set 20).
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In summary, from an input image of 170×170
pixels (28,900 values in greyscale and 86,700 in
RGB), we do obtain 17x17x9 (2,601) values or fea-
tures representing such an image. These values or
feature vectors are the input to the classifier.

For the classification part, the SVC model of
the Scikit-Learn library was used, selecting aGrid-
Search type search and evaluating the following
parameters:

• gamma: scale and auto.
• kernel : linear, rbf, poly and sigmoid.

3.3.2 CNNs

Convolutional neural networks (CNNs) are a type
of artificial neural networks intended to emulate
the behaviour of neurons in the primary visual
cortex of the human brain.

In this work, LetNet-5, one of the most popu-
lar CNN architectures, was chosen as the baseline
to build a proposal customised for olive fly detec-
tion given the input dataset. The main reason
for the popularity of this model is its simple and
straightforward structure. This simplicity, applied
to image recognition, makes it attractive for a
restrictive computing environment such as the one
planned for the deployment of our automatic olive
fly identification and counting system.

Lenet-5 model was proposed by Yann LeCun
and other authors in 1998 [21], to recognise
handwritten and typewritten characters. In this
study, the original structure has been maintained
(Figure 6) but several architectural parameters
need to be updated.

All convolution layers use a kernel size of 3×3
and relu-type activation. In addition, the Max-
Pool stage uses a 2×2 reduction. The hyperparam-
eters of the model were configured as follows:

• optimizer : adam
• loss : binary crossentropy
• metrics : accuracy
• epochs : 6

It is worth mentioning that tests have been
performed on more complex neural networks
architectures. However, it has been observed that,
in these cases, overfitting has occurred, resulting
in worse results.

3.3.3 PCA + Random Forest

PCA (Principal Components Analysis) is another
method widely used in machine learning that aims
to reduce the complexity (dimensional and vol-
ume) of the datasets used to train the different
models. This technique converts a set of corre-
lated variables into a set of values lacking linear
correlation, which we call principal components.
This is done by constructing a new coordinate sys-
tem for the dataset in which the largest variance
is captured on the first axis and so on, assign-
ing an extra dimension to each of the variances
downwards. This transformation, which converts
old coordinates to new ones, is precisely the linear
transformation needed to reduce the dimensional-
ity of the data.

The dataset treated with PCA was classi-
fied using a RandomForestClassifier method. The
implementation used is that of Scikit-Learn in
which the parameters chosen for the model have
been selected based on a GridSearch type search
also from the Scikit-Learn library. The parameters
with which the model has been tested are listed
below:

• criterion: gini, entropy.
• max depth: None, 10, 100, 1000.
• min samples split: 2, 3, 5, 10.
• min samples leaf: 1, 2, 3, 5, 10.
• max features: None, auto, sqrt, log2.
• n estimators: 100, 500, 1000, 5000.

3.4 Energy consumption
measurement

To accurately measure the energy consumed by
each algorithm on the Raspberry Pi 4, a setup
based on the OWON XDM2041 digital multime-
ter was designed. Two configurations were tested.
Initially, the probes were connected to the Test
Points (TP1 and TP2) on the Raspberry Pi dedi-
cated to verifying the 5V power supply. However,
this configuration proved to be unstable due to
the inability to securely attach the probes to
the board, which directly affected the reliability
of the measurements. Therefore, a second con-
figuration (shown in Figure 7) was used, where
the power supply cable was tapped to insert the
multimeter into the circuit. This setup allowed
for unattended operation and improved stabil-
ity. Furthermore, the inevitable modification of
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Fig. 6 LeNet-5 inspired architecture of the CNN model under evaluation for inference on an edge computing context

the system’s working conditions under observation
(due to the internal resistance of the multimeter
used for current measurement) was minimised, as
the Raspberry Pi 4 is capable of compensating and
stabilising the input current.

Fig. 7 Setup built for energy consumption measurement

The OWON XDM2041 digital multimeter can
capture samples at a configurable rate, with an
estimated error of 0.025% and 0.15% in voltage
and amperage readings, respectively. To accom-
modate the latency requirements of the tests, the
sampling process was customised with a 15ms
period for CNN and PCA+Random, and a 111ms
period for HOG+SVM. Each test involved the
classification of 116 regions of interest (ROIs), and
ten executions were performed for each test and
algorithm being evaluated.

4 Results

In this section, we provide detailed information
on the results obtained by the different mod-
els evaluated for all combinations of parameters
and training data sets considered in this study.
For each of the models, the best scenario will be
selected and justified by analyzing the reasons for
such behaviour and interpreting the metrics used
for its assessment (i.e. Accuracy, Precision, Recall
and F1). In all cases, tests were performed for
the eight possible combinations, according to the
characteristics of the training set described in sub-
section 3.1: with/without background extraction,
RGB/greyscale and balanced/unbalanced class
examples.

4.1 HOG+SVM

As it was introduced in subsubsection 3.3.1, six-
teen different types of cells were firstly evaluated
so that conclusions could be drawn about the
impact of both the size and the geometry of the
subdivisions for our application. As an example,
in Figure 8 can be seen, in a graphical way, the
variation of the accuracy metric for the RGB and
greyscale datasets, using an unbalanced combina-
tion of positive and negative examples.

From the analysis of the figures, it can be
concluded that, on the one hand, the larger the
cell size, the less gradient vectors will be used
to represent the image. On the other hand, the
smaller the cell size, the less sensitive to noise is
the information obtained. The use of colour or
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(a) Grayscale dataset without background

(b) RGB dataset without background

Fig. 8 Impact of the cell size and geometry in the accuracy
achieved by the HOG+SVM method for an unbalanced
dataset

greyscale images does not make a significant differ-
ence in terms of the maximum accuracy obtained
in both cases (92.5% versus 92.7% in favour of
RGB images). However, the cell size does affect
the results, with the smallest cell size (10×10 pix-
els) obtaining the best results due to its better
robustness to noise.

In addition, the best combinations of param-
eters for the SVM classifier were: C → 1.0,
class weight → balanced, gamma → scale, kernel
→ poly.

Tables 1 and 2 show the results obtained for
all metrics and datasets with the final configura-
tion. As in all cases, these values are the average

RGB Grayscale

Background YES NO YES NO

Accuracy 0.70 0.82 0.66 0.82
Precision 0.84 0.90 0.79 0.90
Recall 0.46 0.73 0.43 0.75
F1 0.59 0.81 0.56 0.82

Table 1 Performance metrics of the HOG+SVM method
for class-balanced input image sets.

RGB Grayscale

Background YES NO YES NO

Accuracy 0.86 0.90 0.86 0.91
Precision 0.83 0.80 0.71 0.83
Recall 0.07 0.43 0.09 0.44
F1 0.13 0.56 0.16 0.58

Table 2 Performance metrics of the HOG+SVM method
for class-unbalanced input image sets.

RGB Grayscale

Background YES NO YES NO

Accuracy 0.85 0.87 0.86 0.90
Precision 0.83 0.86 0.82 0.88
Recall 0.87 0.89 0.92 0.93
F1 0.85 0.87 0.87 0.91

Table 3 Performance metrics of LeNet-5 CNN for
class-balanced input image sets.

measured results after performing the rankings
with all combinations resulting from the cross-
validation method used. It should be noted that
this method is quite sensitive to imbalances in the
dataset. While accuracy improves when using a
dataset with unbalanced classes, all other param-
eters are negatively affected.

4.2 CNN

Tables 3 and 4 show that the CNN model is sensi-
tive to the training set, having a special impact on
the Precision and Recall metrics. When the CNN
is trained with a set of images where the number
of negative class examples (non-fly) is predomi-
nant with respect to the positive class examples
(fly), a better Accuracy value is obtained because
of the higher probability that the class of the
image to be classified is ”non-fly”. However, if we
look at the rest of the metrics, they are clearly
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RGB Grayscale

Background YES NO YES NO

Accuracy 0.92 0.92 0.91 0.92
Precision 0.83 0.71 0.75 0.72
Recall 0.61 0.67 0.66 0.67
F1 0.70 0.69 0.70 0.69

Table 4 Performance metrics of LeNet-5 CNN for
class-unbalanced input image sets.

favourable for the scenario of a training with a
balanced set of images. Impact of the input image
format (i.e. Grayscale versus RGB) is not signif-
icant, although a slight inferiority in prediction
can be seen for black and white images compared
with colour images. This difference is somewhat
greater, but not much, in terms of the extraction
or not of the background that is not part of the
ROI, as indicated by the segmentation algorithm
in the preprocessing phase.

Figure 9 shows the evolution of the accuracy
and loss of the model as CNN training progresses.
The analysis of the graph allows us to determine
the instant in which the best prediction is obtained
with a minimum mean error. The most interest-
ing thing is to see how both parameters evolve
for the test set (orange line) and not the training
set, since in that case the CNN is being fed with
class examples that did not participate in the first
stage. The goal of this analysis is to determine
the optimal point in this model fitting iterative
process because there is a risk for our CNN to
overfit and not being able to generalize. Thus, we
came to the conclusion that, for both input images
with and without background, 6 epochs give the
best results. From that point on, although the
accuracy of the model increases (slightly, due to
the imbalance in the number of classes), the loss
increases.

4.3 PCA+Random Forest

For this model, tests were performed by varying
the % covariance maintained by the number of
dimensions, as well as the number of remaining
dimensions, and how these variations affect the
metrics obtained by the prediction model.

These tests reflect the differences in the clas-
sification quality of the samples for the training
dataset. Different reductions in the conserved
variance have been progressively applied to this

dataset as shown Tables 5 and 6. To evaluate the
performance of the Random Forest algorithm in
the classification of each of these datasets, the
Accuracy, Precision, Recall and F1 metrics have
been used. As in the previous cases, an 80/20 rule
is followed for creating the training and test sets.

The combination of configuration parameters
that gave the best results was as follows: crite-
rion → entropy;max depth → None;max features
→ auto; min samples leaf → 1; min samples split
→ 3; and n estimators → 100.

Tables 5 to 8 collect all the data generated for
all parameter combinations. In summary, it can
be concluded that the model behaves similarly for
both balanced and unbalanced datasets. This is
a feature that differentiates the PCA+Random
Forest model from previous methods, where the
influence of the percentage of positive class exam-
ples worked against the F1 metric but favoured the
Accuracy metric. In this sense, it is more stable
and homogeneous for all metrics obtained.

We can observe how, for the set of images with
background, the reduction in the percentage of
conserved variance causes the remaining dimen-
sions to decrease more rapidly than that for the
set of images in which the background has been
extracted.

Taking the F1 metric as a reference, we can
observe how the results remain comparable for
the four combinations, although the RGB/No
Background combination seems to stand out on
average. However, the best values are obtained for
the model using the set of images with background
(these values are highlighted in bold in Tables 5
and 6). However, as stated, the difference is very
small.

Another observation is that the maxima in
terms of prediction quality are obtained at PCA
reduction values ranging between 0.75 and 0.5
(depending on the dataset and method). This
behaviour is interesting because it implies, as can
be seen in Tables 7 and 8, a significant dimensional
reduction that greatly simplifies the generated tree
and therefore, the inference time and resources
required.

4.4 Noise robustness in classification

Adding noise to images is a commonly used
technique for evaluating the robustness and gen-
eralisation of classification methods in the field
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(a) RGB dataset without background

(b) Grayscale dataset without background

(c) RGB dataset with background

(d) Grayscale dataset with background

Fig. 9 Evolution of accuracy and loss of LeNet-5 based model during neural network training
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RGB Grayscale

Background No Background Background No Background

Reduction Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

None 0.83 0.82 0.84 0.83 0.85 0.83 0.87 0.85 0.78 0.77 0.80 0.79 0.85 0.85 0.85 0.85
0.99 0.83 0.84 0.82 0.83 0.85 0.81 0.89 0.85 0.82 0.83 0.81 0.82 0.84 0.85 0.83 0.84
0.95 0.84 0.84 0.85 0.84 0.84 0.81 0.87 0.84 0.85 0.87 0.81 0.84 0.85 0.87 0.82 0.85
0.9 0.86 0.86 0.86 0.86 0.84 0.81 0.86 0.84 0.87 0.86 0.88 0.87 0.88 0.89 0.85 0.87
0.75 0.94 0.91 0.99 0.95 0.86 0.84 0.89 0.86 0.92 0.88 0.96 0.92 0.89 0.90 0.88 0.89
0.5 0.83 0.82 0.84 0.83 0.94 0.91 0.98 0.94 0.78 0.77 0.80 0.79 0.95 0.92 0.98 0.95
0.25 0.83 0.82 0.84 0.83 0.85 0.83 0.87 0.85 0.78 0.77 0.80 0.79 0.85 0.85 0.85 0.85
0.1 0.83 0.82 0.84 0.83 0.85 0.83 0.87 0.85 0.78 0.77 0.80 0.79 0.85 0.85 0.85 0.85

Table 5 Variation of prediction model quality metrics as a function of variability conservation. Balanced data set.

RGB Grayscale

Background No Background Background No Background

Reduction Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

None 0.93 0.75 0.73 0.74 0.90 0.66 0.62 0.64 0.92 0.69 0.71 0.70 0.90 0.62 0.61 0.62
0.99 0.90 0.63 0.69 0.66 0.90 0.64 0.65 0.65 0.92 0.71 0.73 0.73 0.90 0.63 0.64 0.63
0.95 0.91 0.68 0.71 0.70 0.92 0.70 0.71 0.70 0.94 0.76 0.78 0.77 0.92 0.68 0.71 0.70
0.9 0.92 0.75 0.72 0.74 0.92 0.73 0.71 0.72 0.95 0.83 0.81 0.82 0.93 0.71 0.74 0.72
0.75 0.99 0.97 0.95 0.96 0.94 0.79 0.79 0.79 0.98 0.98 0.94 0.96 0.95 0.81 0.85 0.83
0.5 0.93 0.75 0.73 0.74 0.98 0.94 0.95 0.95 0.92 0.69 0.71 0.70 0.97 0.92 0.91 0.91
0.25 0.93 0.75 0.73 0.74 0.90 0.66 0.62 0.64 0.92 0.69 0.71 0.70 0.90 0.62 0.61 0.62
0.1 0.93 0.75 0.73 0.74 0.90 0.66 0.62 0.64 0.92 0.69 0.71 0.70 0.90 0.62 0.61 0.62

Table 6 Variation of prediction model quality metrics as a function of variability conservation. Unbalanced data set.

RGB Grayscale

Reduction BKG No BKG BKG No BKG

None 21675 7255
0.99 874 685 581 593
0.95 177 196 90 156
0.9 47 83 26 67
0.75 3 20 2 17
0.5 1 4 1 3
0.25 1 1 1 1
0.1 1 1 1 1

Table 7 Number of components retained as a function of
variability reduction. Balanced data set. With and
without background (BK).

of image processing and machine learning. In
real-world environments, images can be captured
under less than ideal conditions, such as low light-
ing, lens distortions, or electromagnetic interfer-
ence. Adding noise allows the simulation of these
adverse conditions by introducing random varia-
tion in the pixel intensity of the image. In this par-
ticular case, samples from a normal distribution
with different magnification factors were used to
add noise to each pixel of the image. Subsequently,
the results obtained with these noisy images are
compared with the results of the original images to
assess the robustness of the classification model.
This analysis provides insights into the model’s
ability to generalise and maintain adequate per-
formance in more challenging scenarios, which is
crucial for effective real-world applications. By

RGB Grayscale

Reduction BKG No BKG BKG No BKG

None 21675 7255
0.99 1163 951 741 789
0.95 188 211 99 164
0.9 46 82 27 66
0.75 2 18 3 15
0.5 1 3 1 2
0.25 1 1 1 1
0.1 1 1 1 1

Table 8 Number of components retained as a function of
variability reduction. Unbalanced data set. With and
without background (BKG).

evaluating the quality of the results against the
original images, we can determine whether the
model is capable of handling and adapting to the
inherent variability and complexity of real-world
image conditions.

In Figure 10, the impact of using different
Gaussian noise factors on the overall performance
of the classifiers can be observed.

5 Discussion

Next, we present the best results achieved by the
studied models and conduct a comparative anal-
ysis, considering the energy perspective. We draw
conclusions regarding the suitability of each pro-
posed method for the specific problem addressed
in this study, which involves the identification
of olive fruit fly specimens in real-life chromatic



Springer Nature 2021 LATEX template

14 Article Title

(a) Gaussian noise effect on F1 metric (b) Gaussian noise effect on Accuracy metric

Fig. 10 Effects of gaussian noise on methods performance

trap images. Additionally, we consider in our con-
clusions the fact that the final solution will be
deployed on energy-harvesting computing plat-
forms.

Tables 9 and 10 summarize the best results
obtained from the three evaluated methods for
each combination of input data. Among the eight
testing scenarios, only one is selected (highlighted
in bold type font) for later in depth analysis.

As can be seen, the PCA + Random For-
est method obtains the best results. Above all,
its reliability and stability stand out after train-
ing with an unbalanced dataset. For example,
HOG+SVM and CNN can achieve good accuracy
values in this case, but performs much worse in
metrics such as Precision (which impacts F1 neg-
atively). When training with a balanced dataset,
CNN has an excellent performance, very close to
that offered by PCA+Random Forest (although
always below), but for a very specific case, which
is the use of greyscale images and no background.
Regarding the dataset to be used for the training
and deployment of the models, it has been con-
cluded that working with greyscale pictures results
in a general improvement for all three methods.
HOG + SVM and CNN achieve their best perfor-
mance with images without background, whereas
the opposite is true for PCA + Random Forest.
Finally, the worst model in terms of detection
performance and sensitivity to variations in the
training data set is the HOG+SVM method.

Figure 11 details the behaviour of the three
best cases selected for each method, showing
the corresponding confusion matrixes and the
behaviour of the ROC (Receiver Operating Char-
acteristic) curve. As it can be seen, although the
three models perform well, PCA+Random option
stands out from the rest with an Area Under the
Curve (AUC) of 1.

5.1 Performance analysis of the
winner models

In this section, we delve into the details of the
three top-performing models, each representing a
different evaluated method, that have exhibited
exceptional classification performance. By closely
examining these models, our objective is to pro-
vide the reader with valuable insights and lessons
learned that can be potentially applied to simi-
lar applications in the field of object detection,
both in a general sense and specifically for insect
detection (including other species).

SVM+HOG (Accuracy: 0.82 Precision:
0.90 Recall: 0.75 F1: 0.82)

The best results for this model are obtained
by performing the training with the balanced
dataset (2800 elements of each positive and neg-
ative classes) and by extracting the background
from the images. With regard to the use of RGB
or greyscale images, the results are very similar
(although for B&W inputs a few extra decimals
of accuracy are obtained). The tests carried
out show that this model is particularly sensi-
tive to training with images with the original
background, which seems to indicate that it is
particularly affected by noise, represented by the
surface of the chromatic trap and other elements
that may appear. In addition, the results suggest
that the use of an unbalanced dataset also causes
strong overfitting of the model.

CNN (Accuracy: 0.90 Precision: 0.88
Recall: 0.93 F1: 0.91)

The best results for this model were obtained
by training with a balanced dataset (2800 ele-
ments of each positive and negative classes), with
background extraction and greyscale images.
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RGB Grayscale

Background No Background Background No Background

SVM CNN PCA SVM CNN PCA SVM CNN PCA SVM CNN PCA
Acc 0.70 0.85 0.94 0.82 0.87 0.94 0.66 0.86 0.92 0.82 0.90 0.95
Pre 0.84 0.83 0.91 0.90 0.86 0.91 0.79 0.82 0.88 0.90 0.88 0.92
Rec 0.46 0.87 0.99 0.73 0.89 0.98 0.43 0.92 0.96 0.75 0.93 0.98
F1 0.59 0.85 0.95 0.81 0.87 0.94 0.56 0.87 0.92 0.82 0.91 0.95

Table 9 Best results obtained by the three evaluated methods using a balanced data set.

RGB Grayscale

Background No Background Background No Background

SVM CNN PCA SVM CNN PCA SVM CNN PCA SVM CNN PCA
Acc 0.86 0.92 0.99 0.90 0.92 0.98 0.86 0.91 0.98 0.91 0.92 0.97
Pre 0.83 0.83 0.97 0.80 0.71 0.94 0.71 0.75 0.98 0.83 0.72 0.92
Rec 0.07 0.61 0.95 0.43 0.67 0.95 0.09 0.66 0.94 0.44 0.67 0.91
F1 0.13 0.70 0.96 0.56 0.69 0.95 0.16 0.70 0.96 0.58 0.69 0.91

Table 10 Best results obtained by the three evaluated methods using an unbalanced data set.

Tests with the unbalanced dataset show a slight
overfitting of the network, resulting in a bias
in the classification, which translates into worse
results when running the model over the test
dataset. Tests on the balanced dataset show bet-
ter model performance with the set of images
from which the background has been extracted.

PCA+Random (Accuracy: 0.99 Preci-
sion: 0.97 Recall: 0.95 F1: 0.96)

The best results for this model occur in the
combinations of the unbalanced (2800 examples
of positive class versus 18000 examples of neg-
ative class) and background-preserving datasets,
with a small, almost negligible difference between
the use of RGB and greyscale images. In general,
the F1 metric of this model ranges between 0.91
and 0.96 for all configurations, thus outperforming
the results of the previous two models. Contrary
to SVM+HOG and CNN, this model seems to
increase its performance as the number of samples
used to train it increases, regardless of whether
the dataset is balanced or not.

5.2 Energy efficiency analysis

In addition to the exceptional classification per-
formance, computational efficiency plays a crucial

role in the decision-making process for edge arti-
ficial intelligence solutions. This aspect becomes
even more significant when considering the inte-
gration of classification models into low-cost,
resource-constrained devices that rely on unstable
energy sources such as solar panels. This work is
conducted within the context of addressing these
challenges and exploring the feasibility of deploy-
ing efficient and accurate classification models in
such environments.

Time Memory Power Energy
Model (msecs) (MiB) (A) (J)

SVM+HOG 883.54 127 0.631 2.681
CNN 46.71 101 0.638 0.143
PCA+Random 9.05 147 0.587 0.0256

Table 11 Classification time, peak memory usage,
average intensity measured and energy of the three
evaluated models. Average results per ROI classified, after
10 executions. Raspberry PI 4 average voltage measured
during experiments 4.81V.

Table 11 presents a comprehensive overview
of the execution times and memory usage for the
three top-performing classification models inves-
tigated in this study. Despite the CNN model
exhibiting significantly lower memory require-
ments than its counterparts, the trade-off between
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(a) SVM+HOG (b) CNN (c) PCA+Random Forest

Fig. 11 Confusion matrix and ROC curve of the best cases for each method

execution time and memory favours the PCA-
Randommodel. Notably, the PCA-Randommodel
achieves an approximately 6-fold faster execution
time compared to the LeNet-5 based neural net-
work. Furthermore, when considering the invest-
ment of engineering time, the PCA model demon-
strates a nearly 1% improvement in accuracy
detection, further reinforcing its appeal. However,
it is worth noting that memory usage should not
be the sole determinant in selecting the most
suitable method.

Power consumption in the Raspberry Pi 4
was also measured as it is a crucial consideration
in our work for making informed decisions. The
average power intake was observed to be approx-
imately 5% lower in the case of PCA-Random,
which can be attributed to the lower computa-
tional intensity of its operations. To minimise
potential interference from operating system tasks
or other sources of varying workload, we disabled
unnecessary peripherals, the graphical subsystem,
and network functionalities.

Figure 12 shows the variation in amperage dur-
ing computation for the three scenarios and the
details for a single ROI classification in the case
of SVM+HOG (Figure 12b) for clarity.

The characterisation of the models would allow
the engineer to build different application pro-
files and select one depending on the execution
context. For example, if memory is a bottleneck
in our system, we could prioritise such parame-
ters over classification performance and processing
time (e.g. CNN model will be selected). However,
if energy is a scarce resource (i.e. edge device uses
solar panels), the PCA-Random model will be
more suitable.

6 Conclusions

The performance of an artificial intelligence model
for a specific application depends on multiple fac-
tors. In this study, we aim to evaluate the main
supervised learning methods for the classification
of the olive fly, analyzing their behavior under
different working conditions (input image format,
background consideration, light variation, etc.).
The objective is to determine the best strategy for
deploying a solution to control insect pest popula-
tions on edge devices, where resources are limited,
without sacrificing accuracy and ensuring proper
field operation. Within these systems, image cap-
ture conditions are a crucial aspect influenced by
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(a) SVM+HOG (b) SVM+HOG (single ROI profile)

(c) CNN (d) PCA+Random

Fig. 12 Power consumption profile for one test execution (116 ROIs classified)

environmental characteristics. Additionally, it is
necessary to address the various parameter combi-
nations used to select and configure the employed
methods. Moreover, as the main objective of the
study is to implement these techniques on energy-
harvesting devices, another significant challenge
is to achieve an optimal balance between model
energy consumption and the accuracy they pro-
vide. Through a detailed study of the impact
of parameter variation in each model, the best
option was selected based on the F1 score, rather
than relying solely on classification accuracy met-
ric. The combination of PCA+Random Forest
not only achieves the highest classification rates
(99%), but also requires minimal processing time,
resulting in lower energy demand. Therefore, this
method was ultimately chosen to build a func-
tional prototype on a Raspberry PI 4 computer
board powered by solar panels, intended to be
fully autonomous for extended periods.

6.1 Future Research Directions

Considering the limitations identified in this study
and the potential extensions of our research, sev-
eral avenues for future work in this field are
open.

First, the exploration of automatic and sys-
tematic configuration parameter tuning for these
algorithms is a crucial step towards obtaining solu-
tions that aim to strike a balance between result
accuracy and energy consumption.

Similarly, exploring a broader range of Arti-
ficial Neural Networks (ANN) models, especially
those inspired by the brain, is crucial. As high-
lighted in Section 2, SNNs emerge as an appeal-
ing technology, particularly in applications with
power constraints like the BioTrap 4.0 device.
However, additional efforts are necessary to effec-
tively encode static pictures into a time-based
event input, as required by SNNs. Additionally,
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the exploration of suitable training and learn-
ing methods is pivotal for the success of this
type of ANN and must be customized for each
specific application. Furthermore, exploring opti-
mized versions of the YOLO (You Only Look
Once) object detection algorithm is worthwhile.
Variants like Tiny YOLO or YOLO Nano are
specifically designed for systems with limited
memory or computing power. Initially, the CNN
architecture complexity of these YOLO versions
remains higher than that of the proposed LeNet-
5. However, by assessing improvements in accu-
racy and analyzing overall processing time (given
YOLO’s ability to bypass the need for a pre-
processing and segmentation stage), conclusive
insights can be drawn in the opposite direction.

Lastly, the expansion of the study to a larger
number of devices would require adapting the
methods used to the available resources. By
addressing these aspects, further advancements
can be made in the development of efficient and
accurate solutions for pest population control
using edge devices with limited resources.
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