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Abstract Hyperspectral sensors capture wide range of

spectral data, making them crucial for Earth observa-

tion applications, but this fact poses significant chal-

lenges for embedded systems with limited resources.

Nevertheless, most studies only perform one application

at the same time, so multi-applications in the same de-

vice are not considered since high-performance and low

hardware resources are limited. In this sense, this pa-

per presents a hardware-friendly algorithm for concur-

rently execution of anomaly detection and lossy com-

pression for hyperspectral imaging. The proposed al-

gorithm reuses a hardware platform to perform both

tasks in parallel, offering a validated hardware archi-

tecture designed for deployment on a cost-optimized

FPGA device. The experimental results show that our

hardware component can process hyperspectral images
with a resolution of 825x1024 pixels and 160 bands in

0.53 seconds (486MB/s), with a power consumption of

1.08 watts (399MB/W).
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1 Introduction

Hyperspectral sensors capture rich spectral data across

the electromagnetic spectrum, making them ideal for
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Earth observation applications like precision agricul-

ture, geological mapping, and mineral exploration. How-

ever, the large data volume poses challenges for em-

bedded systems with limited resources, exacerbated by

advancements in hyperspectral sensor resolution [1,2].

Traditionally, only one application is used to process

the information captured by hyperspectral sensors, tai-

lored to the device platform on which the application is

running. On this basis, the data captured by hyperspec-

tral sensors is typically not processed on-board due to

the limited computing performance and power capacity

available, so low-power and cost-optimized devices are

used for data sensing, but they lack high-performance

capabilities [3]. In aerial platforms, such as Unmanned

Aerial Vehicles (UAVs), images are generally stored on-

board and processed after the flight mission is com-

pleted [4]. However, transferring large volumes of data

creates a bottleneck in the downlink systems, which

can impact overall performance and increase the energy

consumption budget for transmission [5].

Recent studies suggest edge computing solutions that

facilitate on-board image processing, minimizing the

need for downlink bandwidth. Most hyperspectral imag-

ing (HSI) applications require processing vast amounts

of data using complex algorithms, leading to a signifi-

cant computational burden. To overcome this challenge,

massive parallel processing architectures, such as Graph-

ics Processing Units (GPUs) and Field-Programmable

Gate Arrays (FPGAs), are often employed due to their

high performance and the accuracy of the results they

produce. However, HSI applications, including Artifi-

cial Intelligence (AI) models, are highly computation-

ally demanding, requiring a substantial number of op-

erations per second [6]. Many studies propose deploy-

ing FPGA- or GPU-based high-performance solutions

at the edge [7–9]. However, these solutions are generally
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unsuitable for mobile embedded systems, such as UAVs,

due to constraints related to power consumption, heat

dissipation, and limited energy budgets. Instead, low-

power and cost-optimized devices are often preferred for

on-board data processing, but these devices face limi-

tations in computing performance and power capacity.

In this sense, achieving high performance while ensur-

ing compatibility with available hardware resources re-

quires significant engineering efforts. This process in-

volves optimizing hyperspectral data processing algo-

rithms and developing hardware accelerators to effi-

ciently manage computational workloads.

This paper introduces a hardware-friendly algorithm

for anomaly detection and lossy compression of hyper-

spectral data, utilizing a single FPGA platform for both

tasks. It provides a low-power, cost-optimized solution

for real-time processing in constrained environments.

The FPGA-based architecture and experimental results

are analyzed, comparing performance and resource uti-

lization with state-of-the-art solutions.

2 Algorithm Description

In previous works, we introduced two FPGA-based al-

gorithms: HLCA for lossy compression [10] and LbL-

FAD for anomaly detection [11], each evaluated sepa-

rately [12] [13] and designed for pushbroom/whiskbroom

sensors; both algorithms follow a hardware-friendly ap-

proach, enabling parallelization on GPUs and FPGAs.

This work takes a further step to demonstrate that the

proposed methodology can be efficiently employed for

the aforementioned HSI applications using a single ar-

chitecture with the same set of core operations.

2.1 General Notation

Before starting with the description of the proposed al-

gorithm, it is necessary to define some variables and ter-

minology used throughout the remainder of this manu-

script. A hyperspectral image, HI, is a sequence of nr

hyperspectral frames or lines of pixels, Fi, comprised

by nc pixels with nb spectral bands. Pixels within HI

are grouped in blocks of BS pixels, Mk, being BS usu-

ally equal to nc, or a multiple of it, and k spans from

1 to nr·nc
BS hyperspectral frames. µ̂ is the average pixel

or centroid of each Mk block. C = {cj , j = 1, ..., BS}
represents the centralized version of the input image

block, Mk. Ek = {en, n = 1, ..., p} saves the p most

different hyperspectral pixels extracted from each Mk

block, whilst B* = {Ek, k = 1, ..., nf} retains the sub-

set of selected pixels Ek = {en, n = 1, ..., p} within the

Algorithm 1 Set of core operations

Inputs: Mk = [r1, r2, ..., rBS ], α
Outputs: E = [e1, e2, ..., ep] {Characteristic pixels}; µ̂ {Average
Pixel}; Q = [q1,q2, ...,qp] {Orthogonal vectors}; U =

[u1,u2, ...,up] {Orthonormal vectors}; τ {Threshold}
Algorithm:

1: Average pixel: µ̂;
2: Centralization: C = Mk − µ̂;
3: while exit = 0 do
4: for j = 1 to BS do
5: Brightness: bj = c′

j · cj ;

6: end for
7: Maximum Brightness: jmax = argmax(bj);

8: if
bjmax

(rjmax
−µ̂)

· 100 < α then

9: Stop Condition: exit = 1
10: else
11: Extracted pixels: en = rjmax ;
12: qn = cjmax ;
13: un = qn/bjmax ;
14: Projection: vn = u′

n · C;
15: Subtraction: C = C − qn · vn;
16: τ = bjmax
17: end if
18: end while

first captured nf Mk. Vk = {vn, n = 1, ..., p} com-

prises p vectors of BS elements where each vn vector

corresponds to the projection of the BS pixels within

Mk onto the corresponding n extracted pixel, en. Q =

{qn, n = 1, ..., p} and U = {un, n = 1, ..., p} save p pix-

els of nb bands that are orthogonal among them.

2.2 Set of core operations

The HLCA and LbL-FAD algorithms use orthogonal

subspace projections: HLCA maps the spatial domain

into a transformation domain [2], while LbL-FAD se-
lects distinct pixels from a background. Both coordinate

the core operations implementing the Gram-Schmidt

orthogonalization process [14]. The set of core opera-

tions, detailed in Algorithm 1, processes hyperspectral

data in blocks of BS pixels, denoted as Mk.

Average pixel. The first characteristic pixel, e1, is

chosen based on the highest deviation from the average

pixel, µ̂, which is computed for the input block Mk

(line 1, Algorithm 1).

Centralization. The image block Mk is then cen-

tralized by subtracting µ̂ from each pixel, producing

the centralized image C (line 2, Algorithm 1). Next,

the p most representative pixels are extracted sequen-

tially (lines 3–18, Algorithm 1). Using Gram-Schmidt

orthogonalization, each pixel’s projection onto the se-

lected pixels, en, is computed. New characteristic pixels

are chosen based on the largest orthogonal projections,

ensuring unique spectral information is captured. This

iterative process continues until a predefined stop con-

dition is met (line 8, Algorithm 1).
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Brightness. Pixels are selected based on the high-

est self-dot product (lines 4–6, Algorithm 1), referred to

as brightness in this document. The selected pixels, en,

are chosen from Mk based on maximum brightness in

C (line 11, Algorithm 1). Their orthogonal projections,

qn, and normalized versions, un, are then computed

(lines 12–13, Algorithm 1).

Projection. C are projected onto un, generating

the projection vector vn (line 14, Algorithm 1).

Subtraction. The stored spectral information in

vn is subtracted from C (line 15, Algorithm 1), ensur-

ing C retains only spectral data orthogonal that is not

represented by previously selected spectra.

Regarding the estimation of the number of endmem-

bers, the proposed methodology employs a stop condi-

tion. Each time a pixel en is selected, the spectral in-

formation that cannot be represented by the already

extracted pixels remains in the image matrix C. Con-

sequently, when the image is reconstructed using the

p selected en pixels, a small part of the spectral in-

formation is lost, which corresponds to the remaining

information contained inC. In this sense, the maximum

brightness, bjmax, after selecting the ep, may be indica-

tive of the spectral losses introduced by the unmixing

process and, therefore, could be used to determine p. In

this context, the endmember extraction process termi-

nates when the loss, expressed as a percentage, is lower

than an input parameter α, which represents the per-

centage of spectral information that will be considered

as noise. This stop condition is implemented in line 8

of Algorithm 1, where (rjmax− µ̂) represents the initial

value of rjmax in C.

2.3 The HADeLoC algorithm

A shared mathematical framework enables lossy com-

pression and anomaly detection in HSIs, utilizing the

core operations previously described. This section ex-

plores the feasibility of running both processes simulta-

neously within the proposed methodology.

For hyperspectral lossy compression, the most dis-

tinct pixels, E, and their projection vectors, V, help

decorrelate image blocks, Mk, facilitating compression.

In anomaly detection, E, along with orthogonal coun-

terparts Q and U, define the background subspace to

detect spectral anomalies. The process begins by ex-

tracting the most representative pixels from each block.

To do this, the core operations are applied to the

first nf blocks (Stage 1, Algorithm 2). The key differ-

ence between HLCA and LbL-FAD lies in the num-

ber of iterations needed to extract the p reference vec-

tors. HLCA predetermines p during initialization, while

Algorithm 2 The HADeLOC algorithm.

Inputs: HI = [M1,M2, ...,Mnr·nc
BS

], nf , α

Outputs: See each stage
Algorithm:
Stage 1:
Outputs: µ̂k {Average Pixel}; Ek = [e1, e2, ..., ep]
{Characteristic pixels}; Vk = [v1,v2, ...,vp] {Projections}

1: for k = 1 to nf do
2: Ek = Algorithm 1(Mk, α)
3: B* = [B*,Ek];
4: end for

Stage 2:
Outputs: µ̂B {Average Pixel}; EB = [e1, e2, ..., eb]
{Characteristic pixels}

5: [µ̂b,Q,U, τ ] = Algorithm 1(B*, α)
Stage 3: Applied to each new received frame, Mk, k > nf

Outputs: Vk = [v1,v2, ...,vp] {Projections}
6: for j = 1 to BS do
7: Centralization: cj = rj − µ̂b

8: for n = 1 to p do
9: Projection: v = U′

n · cj

10: Subtraction: cj = cj − Qn · v
11: end for

Stage 4:
Outputs: AD = [x11,x12, ...,xkj ] {Anomaly map}

12: Brightness AD: dj = c′
j · cj

13: if dj ≤ 1.5 · τ then xkj = 0
14: elsexkj = 1
15: end if

Stage 5:
Outputs: Ek = [e1, e2, ..., ea] {Characteristic pixels}; V =
[v1,v2, ...,va] {Projections};

16: if xkj = 1 then
17: while exit = 0 do
18: for j = 1 to BS do
19: Brightness: bj = c′

j · cj ;

20: end for
21: Maximum Brightness: jmax = argmax(bj);

22: if
bjmax

(rjmax
−µ̂)

· 100 < α then

23: Stop Condition: exit = 1
24: else
25: Extracted pixels: en = rjmax ;
26: qn = cjmax ;
27: un = qn/bjmax ;
28: Projection: vn = u′

n · C;
29: Subtraction: C = C − qn · vn;
30: end if
31: end while
32: end if
33: end for

LbL-FAD dynamically evaluates a stop condition at

each iteration to ensure adequate representation of the

processed block. Consequently, the core operations run

n times, with outputs serving both applications, and

whose n is dictated by their combined requirements.

For anomaly detection (Stage 2, Algorithm 2), the

background must be estimated. The core operations are

applied to the background using B*=Ek(k ≤ nf ) as

the input matrix Mk. This yields the background’s av-

erage pixel µ̂ and the orthogonal vectors Q and U,

which are later used to detect anomalous spectra.

At this stage, the outputs of the core operations

serve both applications, enabling their simultaneous ex-

ecution. However, the complexity increases beyond this

point. For anomaly detection, once the background pat-

tern is modeled in Stage 2, the detection process contin-

ues in Stages 3 and 4 to generate the anomaly map. The
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Fig. 1 Line-by-line extraction of the background reference spectra (Stage 1).

average pixel µ̂ is used to centralizeMk, eliminating the

need to recalculate it. Then, the spectral information in

Q and U is subtracted from Mk by repeating the pro-

jection and subtraction operations p times—matching

the number of vectors in Q and U. Notably, bright-

ness computation is unnecessary here, as characteristic

pixels were selected in the prior stage.

Meanwhile, the compression process diverges from

its original version. If an input block Mk contains no

anomalies, it is well represented using projection vec-

tors Vk (Stage 3, Algorithm 2) and characteristic pixels

EB (Stage 2, Algorithm 2). In contrast, additional in-

formation must be extracted from blocks with anoma-

lies by executing the brightness, projection, and sub-

traction operations p times. Thus, p is determined by

a stop condition that ensures sufficient spectral repre-

sentation for these blocks (Stage 5, Algorithm 2).

3 Hardware Architecture

The HADeLoC algorithm has been implemented on an

FPGA-based computing platform using High-Level Syn-

thesis (HLS) tools, which leverage High-Level Languages

(HLLs) like C or C++ to define independent hardware

accelerators (HWacc) for each computational stage. HLS

technology reduces development time and complexity

by translating high-level descriptions into lower-level

RTL (Register Transfer Level) models. This approach

streamlines development by modifying core operations

to merge architectures that enable concurrent compres-

sion and anomaly detection.

Each core operation and anomaly detection func-

tion is modeled as an independent HWacc to meet re-

quirements of HADeLoC. To coordinate these acceler-

ators, a Finite State Machine (FSM) in VHDL orches-

trates execution by activating selectors (blue trapezoids

in Figures 1–4) and triggering HWacc at the right time.

Synchronization is ensured via the standard handshake

protocol provided by Vitis HLS tool, with intermediate

memory buffers preventing stall scenarios.

3.1 Stage 1: Background reference spectra extraction

This stage corresponds to Stage 1 of the anomaly de-

tector algorithm, where the set of core operations is

applied to the first nf image blocks, Mk, to extract

the most characteristic pixels, E. It also aligns with the

spectral transformation performed by the HLCA com-

pressor, differing mainly in the number of pixels, p, to

extract. In this proposal, a stop condition is introduced,

based on the brightness ratio between the selected pixel

in Mk and C, which is evaluated iteratively.

For the sake of clarity, Figure 1 illustrates the pro-

cess. First, the Avg module computes the average pixel

(µ̂) of Mk and stores the image block in internal mem-

ory. The Cent module then centralizes the block by

subtracting µ̂. A small FIFO buffer enables concurrent

execution of centralization and brightness operations,

reducing internal storage needs. The brightness module

also stores the brightest pixel of the block, allowing the

stop condition module to determine whether additional

characteristic pixels are needed. At least two executions

of the brightness module and one iteration of projection

and subtraction are required, ensuring meaningful ratio

comparisons in the stop condition module.
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Fig. 2 Overall background subspace estimation (Stage 2).

Furthermore, the brightness computes the orthogo-

nal projection vectors qn and un using the brightest

pixel (lines 12 and 13, Algorithm 1) and stores them in

separate FIFOs (qVector and uVector, Figure 1). The

Projection and Subtraction modules operate in parallel

to compute projection vectors, V, and remove spec-

tral information from the image block. The Projection

module reads the block from the SBuffer (line 14, Al-

gorithm 1), while the Subtraction module processes the

same pixel and its projection (PBuffer) to compute the

subtracted image (line 15, Algorithm 2). Both modules

read un and qn using a custom array partition to en-

hance parallel execution.

The output at this stage resembles the HLCA com-

pressor’s results, comprising µ̂, selected pixels E, and

projection vectorsV. However, p remains undetermined,

depending on the stop condition. The decompression

process receives a bit array and identifies vectors per

iteration, n. To manage this, an extra bit is placed be-

tween each pair of vectors, en and vn; 0 denotes a new

iteration, adding new vectors, while 1 marks the end

of processing for Mk and the transition to Mk+1. This

synchronization barrier is also used in other data pack-

ing strategies.

3.2 Stage 2. Background subspace estimation

During this stage, the orthogonal subspace vectors Q

and U, modeling the background distribution, are esti-

mated. The core operations are executed similarly to

Stage 1 (Figure 2), but with the selected pixels ex-

tracted in Stage 1 as the input pixel block B*. Unlike

Stage 1, this stage processes a single block instead of

nf blocks. However, the number of input vectors (E)

varies depending on the image. While software can han-

dle variable block sizes easily, hardware implementation

requires standardization to optimize resources. To ad-

dress this, the block size is fixed at 1024 hyperspectral

pixels, extending the background block by sequentially

replicating its data.

Figure 2 illustrates the modified datapath. Internal

memories uMatrix and qMatrix store the orthogonal

projection vectors un and qn extracted from the back-

ground block, which are then used by the Projection

and Subtraction modules. Additionally, the Stop condi-

tion module stores the maximum brightness τ of B∗ in

a register without producing an output.

Since the data being processed is not part of the

image intended for compression and reconstruction on

Earth’s surface, only the selected pixels, E, and the

average pixel, µ̂, are transmitted in the output stream.

These pixels are necessary for decompressing the blocks

without anomalies, Mk, as outlined in the subsequent

algorithm stages.

3.3 Stage 3-4. Computation of the orthogonal

subspace and anomaly detection

The following two stages focus on the detection of anom-

alous spectra, processed on the newly received image

blocks, Mk, similarly to the LbL-FAD algorithm. How-

ever, the compression process diverges from the origi-

nal HLCA compressor. In the original HLCA, the most

characteristic pixels within Mk were selected based on

the highest brightness in matrix C during each iter-

ation. Since the vectors Q and U from Stage 2 model
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Fig. 3 Computation of the background subspace and anomalous target detection (Stage 3 and 4).

the background pattern, they effectively represent most

of the spectral information in each pixel of Mk. These

vectors are used by the LbL-FAD algorithm to project

image pixels onto them, retaining orthogonal informa-

tion, which is crucial for detecting anomalous spectra.

Stage 3 is unique among the stages, involving only

three hyperspectral operators (Figure 3). First, the new

hyperspectral block, Mk, undergoes centralization us-

ing the centroid µ̂b obtained in Stage 2. As a result, the

Avg module is skipped, and the Cent module becomes

the first operation. The centralized block is then stored

in the SBuffer FIFO for later processing by the Projec-

tion and Subtraction modules (lines 8-11, Algorithm 2).

The number of iterations is fixed, corresponding to the

number of orthogonal vectors from Stage 2, denoted as

p. The Brightness and stop condition modules are not

used, meaning no new orthogonal vectors, un and qn,

are generated.

An anomalous pixel is identified by a notably high

l2 − norm, also known as brightness, after subtracting

the spectral information spanned by the background

pattern. On this basis, the Projection and Subtraction

operations are repeated for each of the p times using

the orthogonal vectors selected in Stage 2 and stored

in qMatrix and uMatrix. It is important to note that

these orthogonal vectors must be preserved for subse-

quent blocks. Thus, the qMatrix and uMatrix memo-

ries have been tailored to store the data as it is being

read, ensuring that the data are maintained within the

same memory space and order. (see dark blue arrows in

Figure 3). Moreover, to preserve the consistency with

the preceding stages, the orthogonal vectors, un and

qn, are replicated into uBuffer and qBuffer, respec-

tively. This ensures that the data is fed through the

same channel to the Projection and Subtraction mod-

ules. Furthermore, the output of the last subtraction

operation, cj , is not discarded. Instead, it is used as

the input for the Brightness AD module. In addition,

cj is also stored in SBuffer memory to extract spectral

information when the block contains anomalous pix-

els. To do this, the cj is duplicated to follow the two

paths: feeding the Brightness AD module and storing

the data in SBuffer, but the SBuffer will be drained

when no anomalies are detected.

Regarding the compression process, a projection vec-

tor, vn, is obtained in each iteration, n, and may be used

for offline data reconstruction. Meanwhile, the orthog-

onal vectors stored in Q and U matrix are not included

in the output stream at this algorithm stage. Therefore,

the pixels selected in previous Stage 2 can perfectly rep-

resent the subsequent blocks. For this reason, projection

vectors, V, are part of the output of this stage.

Stage 4 identifies anomalous pixels, which differ from

the background spectra, and can run in parallel with

Stage 3. The subtracted image from the final iteration

of Stage 3 is used as input for Stage 4 (orange arrow in

Figure 3). Stage 4 consists of the Brightness AD mod-

ule, which generates the anomaly map by computing

the brightness of each pixel in the last subtracted im-

age and comparing it with the threshold, τ , from Stage

2. The output is an anomaly map where 1 indicates an

anomalous pixel and 0 indicates a normal pixel, with

the map generated block by block in batch mode.
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Fig. 4 Spectra extraction of anomalous blocks (Stage 5).

3.4 Stage 5. Spectra extraction of anomalous blocks

The HADeLoC algorithm incorporates an additional

computing stage, because the anomalous pixels detected

in the previous stage cannot be effectively reconstructed

using the transmitted V vectors, as they only retain

spectral information representative of the background

pattern. In Stage 3, the latest subtraction output, i.e.

pth iteration, is stored in SBuffer and subsequently

loaded by the Brightness module if the block contains

anomalous pixels. Thus, the Brightness module then

calculates new orthogonal vectors, up+i and qp+i, which

are used by the Projection and Subtraction modules, re-

spectively. Until the Stop Condition module halts the

execution, the loop Brightness-Projection-Subtraction

is performed. In this case, like Stage 1 the stop con-

dition is determined by comparing the difference be-

tween brightness ratios of consecutive iterations, i.e. the

brightness of (p + i)th and (p + i + 1)th are compared

to determine when the block is well represented.

The output stream differs slightly from the previ-

ously mentioned scenarios without anomalies. In this

case, the output also includes the projection vectors, V,

of the image pixels onto the Q and U vectors, which

represent the background pattern estimated in Stage

3. Additionally, it incorporates the extra selected en
vectors and their corresponding vn values, which are

synchronized by barriers like the output of the Stage 1.

4 Results

This section evaluates the HADeLoC algorithm by ana-

lyzing its FPGA-based implementation on a ZC7Z020.

(a) Drone 1 (b) Drone 2 (c) Drone 3

(d) Drone 4 (e) Drone 5 (f) Drone 6

Fig. 5 RGB representation of the dataset with anomalous
spectra highlighted in blue circles.

Performance metrics, including throughput and power

consumption, are compared across different configura-

tions with multiple parallel Processing Elements (PEs).

Each PE processes a pixel band, enabling simultaneous

processing of multiple bands. The architecture employs

two levels of parallelization: (1) core operations run in

parallel when data is available, and (2) fine-grain par-

allelization within each hyperspectral operator allows

multiple bands to be processed concurrently.

The proposed FPGA-based architecture was eval-

uated using hyperspectral images captured by a cus-

tom aerial platform over vineyards in Gran Canaria,

Spain. The dataset, consistent with previous studies, in-

cludes images from two vineyard areas at 27◦59′35.6′′N

15◦36′25.6′′W and 27◦59′15.2′′N 15◦35′51.9′′W.

A Specim FX10 pushbroom hyperspectral camera

mounted on a DJI Matrice 600 drone acquired the data,

capturing 1024 spatial pixels per track and up to 224
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(a) (b)

Fig. 6 Comparison among the compression ratios obtained by HLCA and HADeLoC. (a) HLCA: Nbits = 12; HADeLoC:
Nbits = 14. (b) HLCA: Nbits = 8; HADeLoC: Nbits = 10.

spectral bands (400–1000 nm). However, only 160 bands

were used for experiments, excluding bands with low

spectral response. The dataset consists of 825 hyper-

spectral blocks (1024 pixels × 160 bands, 12-bit depth).

The first 100 blocks are used to compute the back-

ground in Stage 1, while the remaining are analyzed

for anomalies. All blocks are also used for lossy com-

pression evaluation.

RGB representations of the dataset are shown in

Figure 5. The images in Figures 5a -5c were captured

at 72m altitude, 6m/s speed, and 125 FPS, resulting in

a ground sampling distance of 5cm (GSD). Figure 5d

corresponds to a second flight at 45m altitude, 4.5m/s

speed, and 150 FPS, achieving a 3cm GSD. Figures 5e

and 5f were captured at 45m altitude, 6m/s speed, and

200 FPS, also resulting in a 3cm GSD.

The images mentioned above were calibrated using

white and dark calibration to derive reflectance values.

However, neither orthorectification nor georeferencing

processes were applied to the raw data. Instead, the im-

ages were constructed by arranging the subsequent cap-

tured hyperspectral frames alongside each other. This

approach does not impact the quality of the experi-

ments conducted in this study, as the algorithms tested

do not rely on spatial information. It is worth mention-

ing the presence of anomalous artifacts in these images,

such as humans and concrete construction, which have

been highlighted with blue circles in Figure 5.

4.1 Compression performance analysis

Unlike the HLCA algorithm, the HADeLoC approach

does not require a predefined compression ratio (CR);

instead, the number of selected pixels (p) in Stages 1

and 2 is estimated based on a quality stopping con-

dition. A block size (BS) of 1024 was used, aligning

Table 1 Compression performance results obtained with
HADeLoC applied to the collected dataset.

Image Nbits CR bpppb SNR MAD RMSE PNSR SSIM

D
ro

n
e
1

F
ig
.
5
a

14 39.23 0.31 39.45 287.00 15.55 48.41 0.98

10 66.35 0.18 39.32 286.00 15.79 48.28 0.98

D
ro

n
e
2

F
ig
.
5
b

14 40.75 0.29 38.03 317.00 16.38 47.96 0.96

10 70.15 0.17 37.90 320.00 16.62 47.83 0.96

D
ro

n
e
3

F
ig
.
5
c

14 42.52 0.28 40.09 203.00 11.78 50.82 0.96

10 75.62 0.16 39.76 205.00 12.24 50.49 0.96

D
ro

n
e
4

F
ig
.
5
d

14 55.57 0.22 21.49 470.00 49.68 38.32 0.62

10 102.74 0.12 21.47 471.00 49.79 38.30 0.61

D
ro

n
e
5

F
ig
.
5
e

14 25.30 0.47 33.66 568.00 23.97 44.65 0.90

10 42.70 0.28 33.58 567.00 24.18 44.58 0.90

D
ro

n
e
6

F
ig
.
5
f

14 60.07 0.20 30.19 371.00 33.48 41.75 0.85

10 101.61 0.12 30.18 372.00 33.52 41.74 0.85

with the image acquisition system and the previous op-

timal HLCA results [12]. The experiments were carried

out with BS = 1024 and Nbits = [14, 10], increasing

the values by two compared to prior works [12] [11]

(Nbits = [12, 8]) to accommodate the scaled V vectors,

which range between [0, 4] after pixel brightness scaling.

Table 1 presents the results obtained, including the

results achieved for CR. Compression performance was

assessed in two ways: (1) by evaluating the compression

ratio and the average number of bits per pixel per band

(bpppb) in compressed images, and (2) by analyzing

data loss using five quality metrics: signal-to-noise ra-

tio (SNR), mean absolute deviation (MAD), root mean

square error (RMSE ), structural similarity index mea-

sure (SSIM ), and peak signal-to-noise ratio (PSNR).
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(a) (b)

(c) (d)

Fig. 7 Quality compression results of HLCA and HADeLoC algorithms. (a) SNR. (b) MAD. (c) RMSE. (d) SSIM.

Figure 6 compares the CR obtained with those of

the HLCA algorithm [11], evaluated at three minimum

compression ratios (CR = [12, 16, 20]). The compari-

son aligns Nbits = 14 with 12 bits and Nbits = 10 with

8 bits. The results highlight several key observations.

First, the proposed algorithm dynamically determines

the CR based on the spectral variability of the HSIs

analyzed. As shown in Figure 6, the new approach con-

sistently achieves significantly higher CRs than HLCA,

even in its highest setting (CR = 20). This difference is

particularly notable when Nbits = 10, where CR is 40-

46% higher than with Nbits = 14. This occurs because

the same number of pixels (p) is selected in Stages 1 and

2, and the same number of anomalous spectra is iden-

tified, while Nbits only affects the scaling and encoding

of the V vectors. Consequently, compressed data using

Nbits = 14 require more bits than those withNbits = 10.

From a quality perspective, setting Nbits to 14 or 10

results in similar spectral distortions, but Nbits = 10

achieves a 60% higher compression ratio. However, the

compression quality is lower than that of the HLCA

algorithm due to the significantly higher CR values ob-

tained. For Drone 5 (Figure 5e), CR is comparable to

HLCA at CR = 20, leading to similar SNR values. Ad-

justing the stopping condition to match HLCA’s CR

would yield more comparable quality metrics.

It is important to note that the dataset primarily

consists of dark images that do not fully utilize the

sensor’s dynamic range. This is evident from the PSNR

values in Table 1. PSNR represents the ratio between

the maximum possible power of a signal and the power

of corrupting noise, while SNR represents the ratio be-

tween the signal power and the noise power. The sig-

nificantly higher PSNR values compared to SNR values

indicate that the images were captured under low-light

conditions. Consequently, the inherent image noise is

comparable to the signal power, negatively impacting

the SNR values. Additionally, the presence of unde-

sirable distortions, such as sparkles, scattering, or the

sweeping motion of the data acquisition platform, can

lead to a misrepresentation of the background model

estimated in Stages 1 and 2. This, in turn, affects the

quality of compression in subsequent image blocks. This

effect is particularly evident in Drone 4 (Figure 5d),

which exhibits the poorest reconstruction after the com-

pression/decompression process. Furthermore, this spe-

cific image poses an additional challenge, as the pixels

on the white road markings are nearly saturated, result-

ing in high l2-norm values, i.e., high brightness levels.
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Fig. 8 Anomaly detection results obtained by the HADeLoC proposal.

Finally, regarding the Maximum Absolute Differ-

ence (MAD) assessment metric, it exhibits the great-

est discrepancies compared to the results obtained with

the HLCA compressor. The MAD represents the high-

est reconstruction error among all image pixels after the

compression/decompression process. The pixels located

on the rounded edges of anomalous entities primarily

consist of background spectra mixed with the anom-

alous signature. As a result, they cannot be perfectly

reconstructed through a linear combination of the back-

ground spectra, leading to the highest MAD values in

the proposed methodology.

Beyond the previous analysis, the HADeLoC has

also been compared with the proposed methodology

under more similar conditions, i.e. when both HLCA

and HADeLoC achieve comparable compression ratios

(CR). Figure 7 presents four graphical representations

showing the achieved CR and the quality of compres-

sion results through the SNR, MAD, RMSE, and SSIM

metrics for both algorithms. In this scenario, the num-

ber of bits per pixel (Nbits) has been set to 14 for HADe-

LoC and 12 for HLCA, with similar behavior observed

at lower Nbits configurations. The MAD and RMSE

metrics indicate that the HLCA algorithm achieves bet-

ter performance with lower information loss after the

compression/decompression process. The key difference

lies in Stage 3: HLCA centralizes each image block,Mk,

using its average pixel, µ̂, and then selects pixels E to

represent the block processing. In contrast, the HADe-

LoC algorithm relies on µ̂ as well as the orthogonal

vectors Q and U from the initial blocks nf obtained

in Stage 2. This means that the quality of the pro-

posed method depends on background modeling. Con-

sequently, the image Drone 4 (Figure 5d) is not well

reconstructed because the spectral information of the

white road markings is treated as part of the back-

ground, leading to the highest MAD values. However,

for the remaining images in the dataset, the reconstruc-

tions are closely aligned with those of the HLCA.

4.2 Anomaly detection performance analysis

The HADeLoC algorithm follows the processing stages

of the LbL-FAD algorithm, yielding similar anomaly

detection results. Figure 8 presents anomaly detection

maps overlaid on panchromatic images, highlighting pix-

els with anomalies in red. Each scenario includes a con-

fusion matrix to assess the detection performance.

The algorithm assumes that the first nf hyperspec-

tral frames sufficiently represent the background. How-

ever, in highly heterogeneous environments or in the

presence of distortions (e.g., sparkles, scattering, or plat-

form motion), this assumption may not hold. As a re-

sult, approximately 40% of anomalies in Drone 2 and

Drone 3 are missed. In contrast, background models for

other images are more representative, leading to bet-

ter anomaly detection. Drone 1 achieves full detection,

while Drone 4 and Drone 5 exhibit near-accurate per-

formance, though some anomalies are missed. In Drone

6, some pixels were incorrectly flagged as anomalous.
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Table 2 Hardware utilization of HADeLoC algorithm for a
ZC7Z020 SoC after post-implementation phase.

PEs BRAM18K DSP48E FlipFlops LUTs

1 214 (76.43%) 14 (6.36%) 8,181 (7.69%) 6,859 (12.89%)
2 183 (65.36%) 22 (10.00%) 8,731 (8.21%) 7,624 (14.33%)
4 191 (68.21%) 38 (17.27%) 10,041 (17.03%) 9,261 (17.41%)
8 197 (70.36%) 70 (31.82%) 12,728 (11.96%) 12,576 (23.64%)
10 205 (73.21%) 86 (39.09%) 14,840 (13.95%) 14,846 (27.91%)
16 193 (63.93%) 134 (60.91%) 18,491 (17.38%) 18,970 (35.66%)
20 197 (70.36%) 166 (75.45%) 23,096 (21.71%) 23,959 (45.04%)

4.3 Hardware and performance analysis

The HADeLoC architecture has been implemented on a

ZC7Z020 FPGA for performance evaluation. This new

version runs two applications simultaneously, making

direct comparisons with previous implementations [12]

and [13], but HADeLoC is considered a unique applica-

tion in this evaluation. The selected FPGA (Artix) of-

fers a balance between cost, power efficiency, and through-

put compared to higher-end architectures like Kintex

or Ultrascale+. However, the hardware limitations of

ZC7Z020 require significant engineering efforts, as dis-

cussed previously.

Table 2 details the resource usage for different con-

figurations based on the number of instantiated process-

ing elements (PEs). Each PE processes multiple bands

in parallel in batch mode. The block size is set to 1024

hyperspectral pixels, matching the sensor’s maximum

capacity, with 160 spectral bands. The FPGA supports

up to 20 PEs, constrained by the 220 available DSPs,

with this configuration using 166. Thus, DSPs are the

primary limiting resource. The number of PEs must be

a divisor of the total bands to optimize hardware effi-

ciency. While other resources are not critical to scalabil-

ity, BRAM utilization ranges from 64% to 77%, mainly

allocated to the SBuffer FIFO for storing the hyper-

spectral block during processing.

The performance of the HADeLoC hardware accel-

erator is measured in frames per second (FPS), where

each frame corresponds to a block or line of 1024 hy-

perspectral pixels. Table 3 presents the achieved FPS

based on the number of instantiated PEs, with the

FPGA operating at 143MHz. To ensure consistency,

the same hyperspectral images (HSIs) used in previous

implementations are employed for performance evalua-

tion and comparison. The results demonstrate a linear

scalability pattern, which means that performance in-

creases proportionally with the number of PEs. Addi-

tionally, HADeLoC’s performance is influenced by the

selected background and the proportion of pixels not

represented by it, i.e., anomalous pixels. This variabil-

ity causes FPS fluctuations of up to ±1.5% compared

to the values reported in Table 3. On this basis, the ar-

chitecture with four processing elements is adequate for

Table 3 FPS and FPS/W achieved by the different versions
of the HADeLoC accelerator (Clock Frequency: 143MHz).

PEs 1 2 4 8 10 16 20

FPS 122 245 489 855 1006 1366 1552

HWacc (W) 0.473 0.512 0.496 0.688 0.802 0.920 1.214

FPS/W 259 478 986 1243 1254 1485 1278

Fig. 9 Performance and power trade-off analysis of HLCA,
LbL-FAD and HADeLoC proposals (Clock freq.: 143MHz).

real-time processing at the highest spatial and spectral

resolution captured by the Specim FX10 camera, as it

can handle images at 489 FPS. Furthermore, a more ad-

vanced hyperspectral sensor, such as the Specim FX10+

camera, which increases the image speed to 705 FPS,

can also be integrated with the proposed architecture.

However, to achieve real-time processing with this sen-

sor, the number of processing elements must be in-

creased to 10. Table 3 also provides information on the

power consumption of the FPGA-based implementa-
tion in various configurations of the HADeLoC accel-

erator on a ZC7Z020 device. From an energy efficiency

point of view, the architecture performs well, with a

power usage ranging from 0.5 watts for a single PE

to 1.2 watts when scaling up to 20 PEs. However, the

power consumption follows an exponential growth trend

rather than a linear one, primarily due to the increased

number of active hardware resources and clock regions.

Figure 9 shows the performance and power trade-off

among HLCA, LbL-FAD, and HADeLoC. HADeLoC

processes frames at slightly lower FPS than LbL-FAD

but higher than HLCA, maintaining LbL-FAD’s speed

advantage. HADeLoC also consumes 6-30% less power

than the other implementations. In higher PE configu-

rations, HADeLoC outperforms in FPS-to-power ratio,

while in lower PE setups, all three have similar FPS/W

performance. This confirms HADeLoC’s performance

is similar to LbL-FAD, reflecting comparable computa-

tional strategies.
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Table 4 Datasets/devices of state-of-the-art and HADeLoC.

Prop. Data Set Lines BS Bands Device Price (€)

C
o
m
p
re
ss
io
n [15] - 16 16 256 5VFX130 5,011.82

[16] Jasper Ridge 614 512 224 5VFX100T 4,819.07

[17] Jasper Ridge 614 512 224 XC7VX690T 19,029.66

[18] AVIRIS 512 512 256 XC7VX690T 19,029.66

[19] AVIRIS 512 512 256 XCZU9EG 4,832.37

[12] Drone 1024 1024 180 ZC7Z020 168.45

A
n
o
m
a
ly

D
e
te
c
ti
o
n

[20]
HyMap 614 512 126

XC7VX690T 19,029.66
WTC 614 512 224

[21]

HyMap 100 300 126

XC7VX980T 34,939.96Hydice Forest 64 64 169

Hydice Urban 80 100 175

[22]

San Diego 100 100 189

XC7K325T 1,820.75

Urban-Beach 1 100 100 207

Urban-Beach 2 100 100 191

Urban-Beach 3 100 100 205

Urban-Beach 4 150 150 188

EI Segundo 250 300 224

[23] Sentinel-2 120 120 10 XCZU9EG 4,832.37

[13] Drone 825 1024 160 ZC7Z020 168.45

ours Drone 825 1024 160 ZC7Z020 168.45

5 Discussion

The hardware resource utilization and performance of

HADeLoC have been compared with state-of-the-art

proposals using reconfigurable hardware. This analy-

sis considers two HSI applications: compression and

anomaly detection. Table 4 lists the datasets, device

setups, and hyperspectral cube sizes used by each pro-

posal, noting that HADeLoC processes the largest hy-

perspectral cube, requiring significant internal memory.

The table also shows the selected devices and their

costs. Unlike other proposals using high-cost devices

with extensive resources, HADeLoC is designed for cost-

effective devices, making it more suitable for embedded

systems while still achieving high performance.

Table 5 compares the hardware resource utilization

and throughput of state-of-the-art proposals on recon-

figurable hardware. Throughput is analyzed using met-

rics like Megasamples per second (MSample/s), MB per

second (MB/s), and data processed per second per watt

(MBS/W). Power consumption is shown for each hard-

ware accelerator, focusing only on the accelerator itself.

The HADeLoC algorithm has been compared with

other FPGA-based compressors. For example, D. Bas-

cones et al. [18] present an FPGA-based prediction-

based compression architecture with a throughput of

up to 170.33 MSamples/s and power consumption of

0.714 watts. While their power consumption is lower

than HADeLoC’s, the MBS/W of their design is slightly

higher. In general, the performance of their architecture

is similar to that of HADeLoC. L. Santos et al. and

A. Garćıa et al. propose lossy compression algorithms

for the ESA ExoMars mission [15], [16]. These solu-

tions, developed using HLS (CatapultC), show lower

performance as reflected in the throughput metrics in

Table 5. Similarly, Y. Barrios et al. in [19] present a

lossy compressor based on CCSDS with HLS, deployed

on a reconfigurable platform (ARTICo). While scal-

able, this flexibility reduces throughput, achieving only

1.87 MSamples/s and higher power consumption per

megabyte (3.96 MBS/W). In [17], Fernández et al. use

PCA-based dimensionality reduction for HSI compres-

sion, but their throughput is much lower than HADe-

LoC’s, even with a VHDL-based solution. The HADe-

LoC architecture, developed with a mix of HLS and

VHDL, achieves better parallelization, lower power con-

sumption, and higher throughput compared to these

approaches.

The HADeLoC architecture has also been compared

with several state-of-the-art anomaly detectors. J. Wu

et al. in [21] optimize internal memory with FFs and

LUTs, but their design only processes one pixel per 17

cycles, limiting FPGA parallelization. B. Yang et al.

in [20] also use fixed-point precision but fail to achieve

higher parallelism. J. Lei et al. in [22] create a pipeline

entirely in HLS, which results in lower throughput. M.

Coca et al. in [23] employ Vitis AI Framework for nat-

ural anomaly detection, but again, performance is lim-

ited by high-level tools.

Regarding hardware resource utilization, HADeLoC

uses a significant portion of available resources due to

the cost-optimized design, as opposed to oversized FPGA

devices that provide unnecessary resources. While high-

level frameworks reduce development time, they do not

fully leverage FPGA potential, leading to lower through-

put. The HADeLoC architecture outperforms state-of-

the-art proposals in terms of MSample/s and MB/s,

and even though it is slightly slower than previous ver-

sions, but it adds the benefit of performing two HSI

applications simultaneously.

From an energy perspective, the HADeLoC archi-

tecture consumes 1.082 watts, positioning it in the mid-

dle of the state-of-the-art proposals. It is important to

note that many of these proposals do not provide power

consumption data, so estimates were made using the

Xilinx Power Estimator (XPE) tool. The energy effi-

ciency is evaluated through the MBS/W metric, which

measures the number of megabytes processed per sec-

ond per watt. In this regard, the HADeLoC architecture

demonstrates a strong trade-off in terms of MBS/W,

highlighting its high energy efficiency. The architecture

by D. Bascones et al. in [18] is also energy-efficient, as

it requires a low power budget for their HWacc.
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Table 5 Hardware utilization, power consumption and throughput of the state-of-the-art and HADeLoC proposals.

Proposal
Hardware Resources Freq. Power Throughput

BRAMs DSPs FFs LUTs (MHz) (Watts) MSamples/s MB/s MBS/W

C
o
m
p
re
ss
io
n L. Santos et al. [15] 17 (2.852%) 4 (1.250%) 4,208 (20.55%) 7,836 (5.978%) 80.2 2.029∗ 19.25 36.71 18.09

A. Garćıa et al. [16] 4 (0.877%) 25 (9.766%) 1,937 (3.027%) 7,746 (12.10%) 86.96 2.022∗ 27.37 52.21 25.82

D. Fernández et al. [17] 897 (30.51%) 2,580 (71.67%) 57,564 (6.644%) 294,454 (67.99%) 75.99 2.46∗ 16.87 32.21 13.09

D. Báscones et al. [18] 6 (0.204%) 5 (0.139%) - 6,731 (1.554%) 355.3 0.714 170.33 324.87 455.00

Y. Barrios et al. [19] 312 (34.21%) 26 (1.032%) 42,771 (7.803%) 56,800 (20.72%) 100 0.9∗ 1.87 3.56 3.96

J. Caba et al. [12] 218 (77.85%) 202 (91.82%) 20,028 (18.82%) 19,415 (36.49%) 143 1.225 265.84 507.04 413.91

A
n
o
m
a
ly

D
e
te
c
ti
o
n

B. Yang et al. [20]
240 (8.163%) 265 (7.361%) 28,245 (3.260%) 21,730 (5.016%) 200 0.641 36.34 69.31 108.13

284 (9.660%) 459 (12.75%) 43,544 (5.026%) 33,997 (7.848%) 200 0.897 29.70 56.64 63.15

J. Wu et al. [21]

4 (0.133%) 1,064 (29.56%) 772,164 (63.09%) 269,751 (44.08%) 100 2.72 10.08 19.23 7.07

3 (0.100%) 460 (12.78%) 277,048 (22.63%) 140,362 (22.93%) 100 1.333 11.16 21.29 15.97

3 (0.100%) 580 (16.11%) 414,673 (33.89%) 146,977 (24.02%) 100 1.619 11.29 21.53 13.30

J. Lei et al. [22]

216 (24.27%) 12 (1.429%) 49,964 (12.26%) 33,969 (16.66%) 200 0.614 3.58 6.83 11.12

282 (31.68%) 12 (1.429%) 57,962 (14.22%) 43,890 (21.54%) 200 0.687 3.74 7.14 11.39

198 (22.25%) 12 (1.429%) 46,370 (11.38%) 31,681 (18.98%) 200 0.593 3.72 7.10 11.97

282 (31.69%) 12 (1.429%) 57,929 (14.21%) 43,874 (21.53%) 200 0.686 3.71 7.07 10.31

282 (31.69%) 12 (1.429%) 58,593 (14.37%) 44,906 (22.03%) 200 0.691 3.59 6.86 9.93

525 (58.99%) 12 (1.429%) 83,713 (20.54%) 67,591 (33.17%) 200 0.911 2.14 4.08 4.48

M. Coca et al. [23] 255 (27.96%) 710 (28.17%) 98,525 (17.97%) 51,351 (18.74%) 100 1.3∗ 0.206 0.392 0.302

J. Caba et al. [13] 197 (70.36%) 166 (75.45%) 23,071 (21.68%) 23,493 (44.16%) 143 1.077 265.03 505.51 469.37

ours 197 (70.36%) 166 (75.45%) 23,096 (21.71%) 23,959 (45.04%) 143 1.082 255.03 486.44 449.57

∗ Estimated with the Xilinx Power Estimator tool (XPE).

6 Conclusion

In recent years, significant efforts have been dedicated

to on-board HSI processing for real-time applications,

moving away from large high-performance computing

systems. Although next generation commercial hard-

ware devices evolve, offering improved spatial, spectral,

and temporal resolutions, real-time onboard processing

of HSIs remains challenging, particularly when multi-

ple applications need to be executed concurrently on

the same hardware. This requires the development of

hardware-friendly algorithms and reconfigurable plat-

forms to tackle such challenges in hyperspectral remote

sensing.

This paper presents the HADeLoC algorithm, which

enables real-time processing by executing multiple hy-

perspectral analysis techniques simultaneously. It re-

duces hardware acceleration time by reusing products

across algorithms and allows concurrent task execution,

minimizing computational cost and hardware require-

ments. Designed for embedded systems, especially au-

tonomous UAVs, HADeLoC addresses energy and re-

source constraints by modifying the datapath at run-

time. HADeLoC offers compression performance com-

parable to the HLCA algorithm and matches LbL-FAD’s

anomaly detection precision. It outperforms existing

methods in compression quality, detection accuracy, pro-

cessing time, and power efficiency, making it ideal for

production on cost-optimized devices.

In this work, two main areas of improvement have

been identified. First, we aim to enhance the back-

ground modeling process, as the initial captured lines

play a crucial role in detecting anomalies throughout

the rest of the scene. Second, we plan to explore energy-

saving techniques for embedded systems, including dy-

namic power management, adaptive compression, and

integration of energy-harvesting methods.
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and R. Sarmiento, “A New Algorithm for the On-Board
Compression of Hyperspectral Images,” Remote Sensing,
vol. 10, no. 3, 2018.

11. M. Dı́az, R. Guerra, P. Horstrand, S. López, and
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